

Image Processing

Felix Heide
Princeton University
COS 426, Spring 2020

Image Processing Operations

- Luminance
 - Brightness
 - Contrast
 - Gamma
 - Histogram equalization
- Color
 - Grayscale
 - Saturation
 - White balance

- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Image Processing Operations

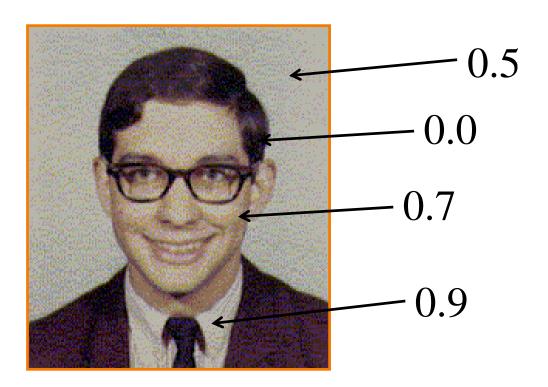
- Luminance
 - Brightness
 - Contrast
 - Gamma
 - Histogram equalization
- Color
 - Grayscale
 - Saturation
 - White balance

- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

What is Luminance?

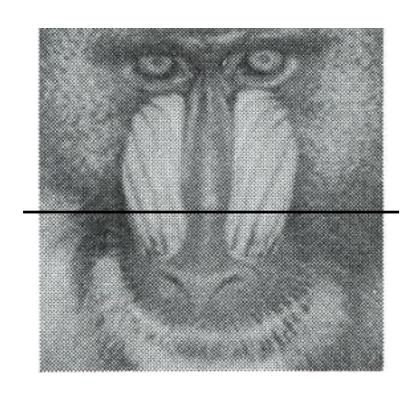
Measures perceived "gray-level" of pixel

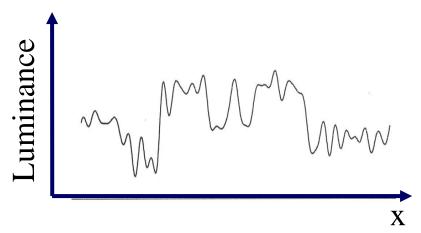
L = 0.30*red + 0.59*green + 0.11*blue



Luminance

Measures perceived "gray-level" of pixel

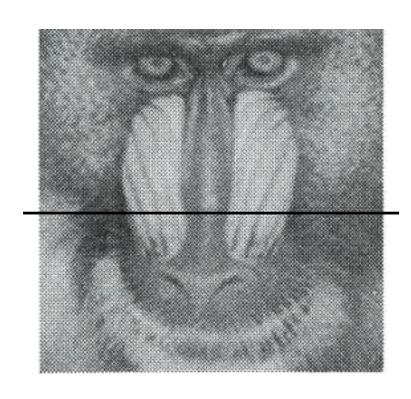


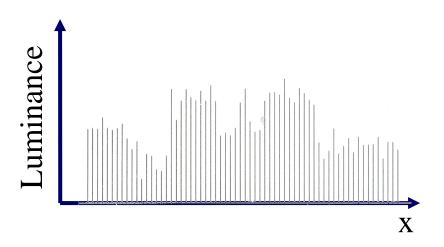


Samples of luminance for pixels on one horizontal row of pixels

Luminance

Measures perceived "gray-level" of pixel

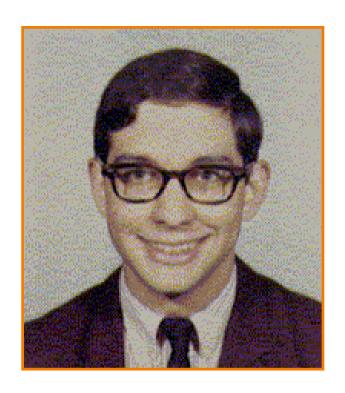


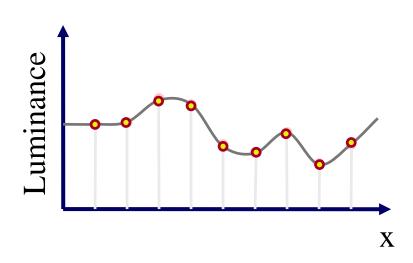


Samples of luminance for pixels on one horizontal row of pixels

Adjusting Brightness

 What must be done to the RGB values to make this image brighter?



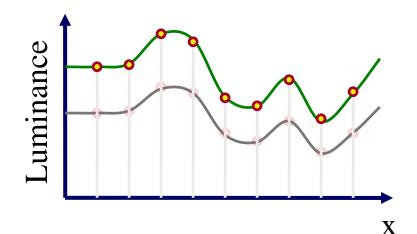


Adjusting Brightness

- Method 1: Convert to HSL, scale L, convert back (more on this shortly...)
- Method 2: Scale R, G, and B directly
 - o Multiply each of red, green, and blue by a factor
 - o Must clamp to [0..1] ... always ([0..1] in floating point but often [0,255] for fixed point)

Original

Brighter



Adjusting Contrast

Compute mean luminance L* over whole image
 Scale deviation from L* for each pixel

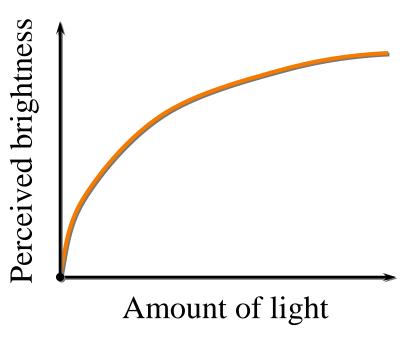
Original

More Contrast

Adjusting Gamma

Apply non-linear function to account for difference between brightness and perceived brightness of display

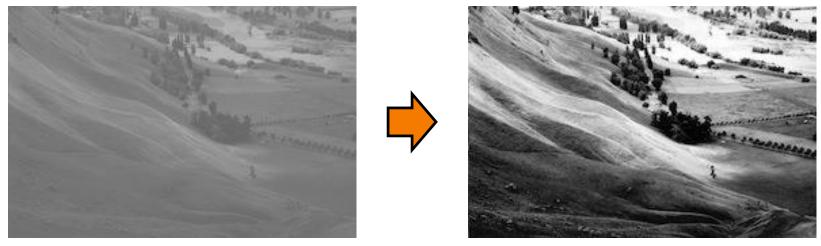
$$I_{out} = I_{in}^{\gamma}$$



γ depends on camera and monitor

Histogram Equalization

Change distribution of luminance values to cover full range [0-1]



http://en.wikipedia.org/wiki/Histogram_equalization

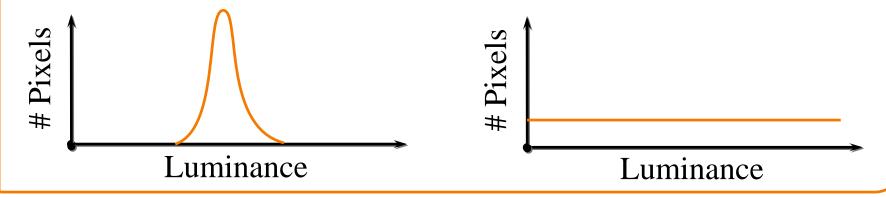


Image Processing Operations

- Luminance
 - Brightness
 - Contrast
 - Gamma
 - Histogram equalization
- Color
 - Grayscale
 - Saturation
 - White balance

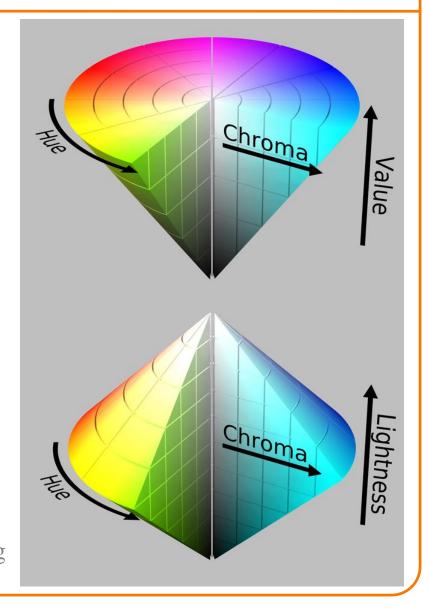
- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Color processing

- Color models (last lec.)
 - RGB
 - CMY → HSV
 - HSV
 - XYZ
 - La*b*
 - Etc.

HSL

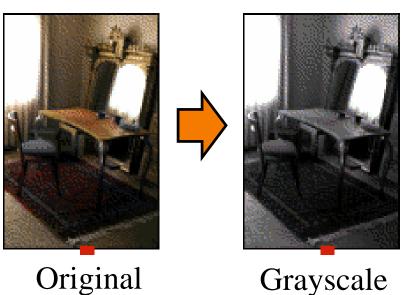
http://commons.wikimedia.org/wiki/ File:HSV_color_solid_cone_chroma_gray.png



Grayscale

Chroma

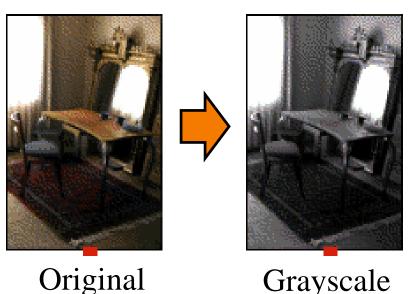
Convert from color to gray-levels

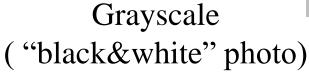


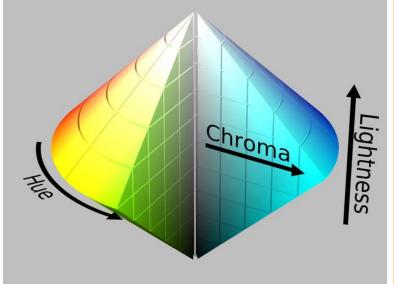
Grayscale ("black&white" photo)

Grayscale

Convert from color to gray-levels





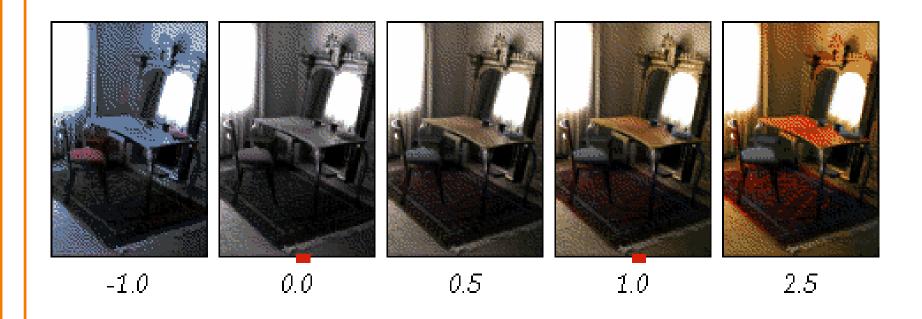


Method 1: Convert to HSL, set S=0, convert back to RGB

Method 2: Set RGB of every pixel to (L,L,L)

Adjusting Saturation

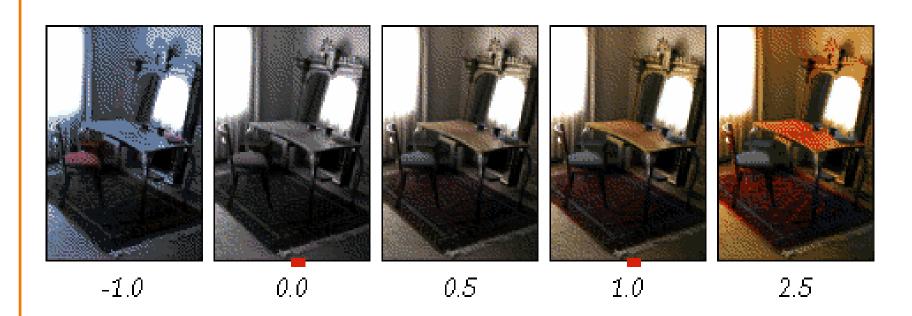
Increase/decrease color saturation of every pixel



Adjusting Saturation

Chroma

Increase/decrease color saturation of every pixel



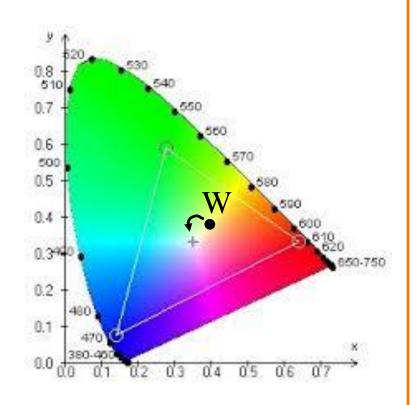
Method 1: Convert to HSL, scale S, convert back

Method 2: $R' = L + scale * (R-L) \dots same for G&B$

Adjust colors so that a given RGB value is mapped to a neutral color

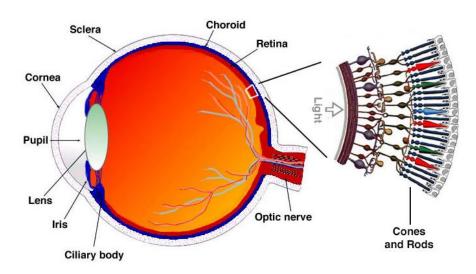
Conceptually:

Provide an RGB value W that should be mapped to white Perform transformation of color space

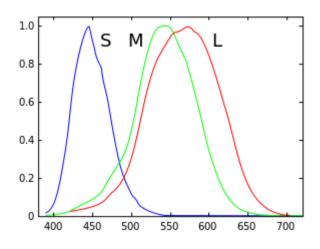


Von Kries method: adjust colors in LMS color space

 LMS primaries represent the responses of the three different types of cones in our eyes



http://www.blueconemonochromacy.org



Wikipedia

For each pixel RGB:

1) Convert to XYZ color space

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9502 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

2) Convert to LMS color space

$$\begin{bmatrix} L \\ M \\ S \end{bmatrix} = \begin{bmatrix} 0.40024 & 0.7076 & -0.08081 \\ -0.2263 & 1.16532 & 0.0457 \\ 0 & 0 & 0.91822 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

- 3) Divide by L_WM_WS_W the color of "white" in LMS
- 4) Convert back to RGB

Image Processing Operations

- Luminance
 - Brightness
 - Contrast.
 - Gamma
 - Histogram equalization
- Color
 - Grayscale
 - Saturation
 - White balance

- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

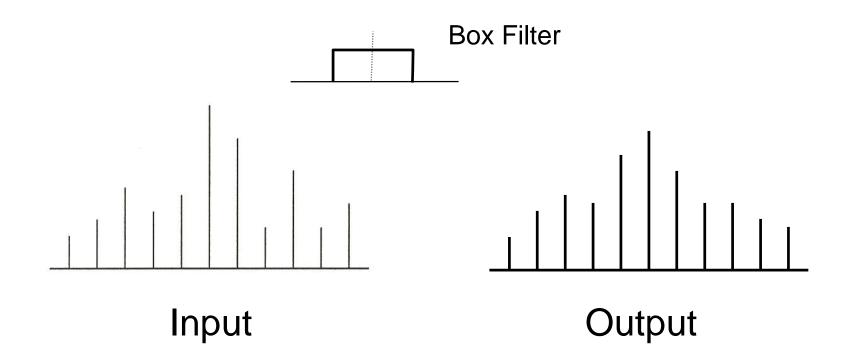
Blur

What is the basic operation for each pixel when blurring an image?

Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

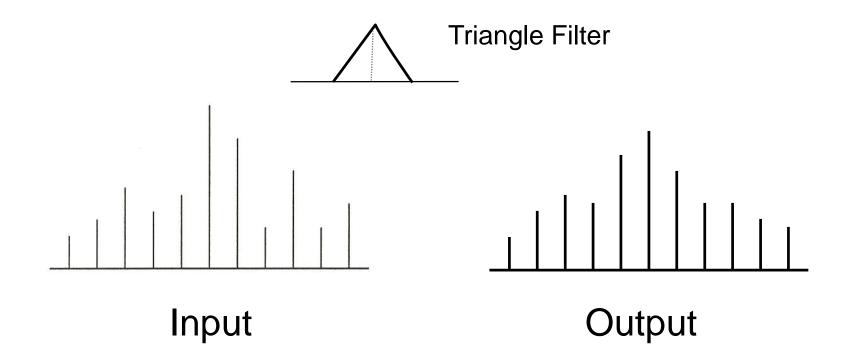
Pattern of weights is the "filter" or "kernel"



Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

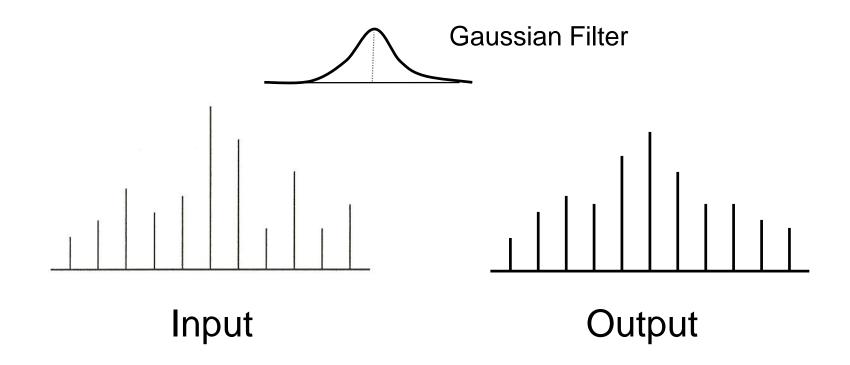
Pattern of weights is the "filter" or "kernel"

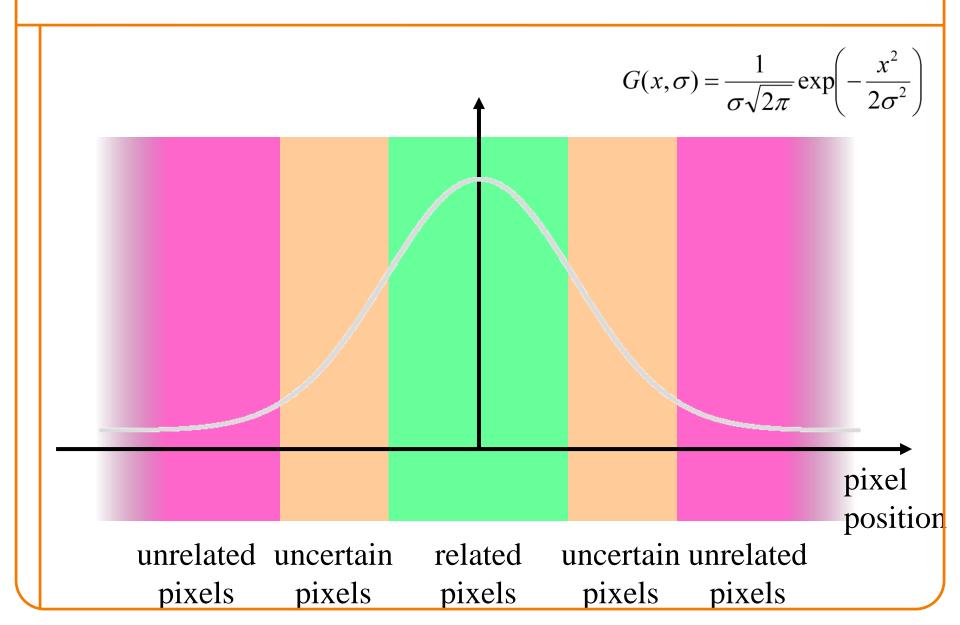


Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

Pattern of weights is the "filter" or "kernel"





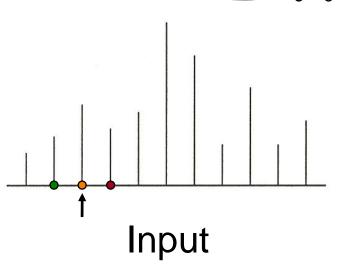
0.4

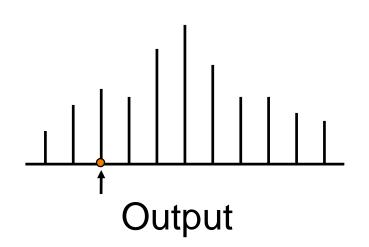
Filter

Output value is weighted sum of values in neighborhood of input image

 $G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$

Note to fix slides: weights should sum to 1. Practical solution in next lecture: divide by sum of weights.

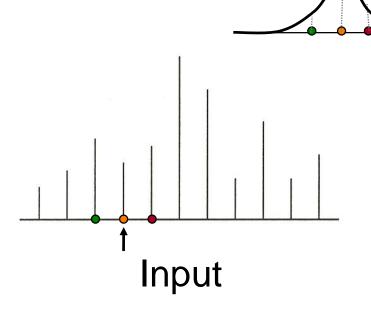


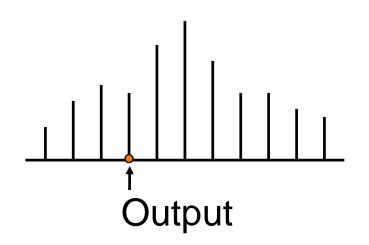


0.4

Filter

$$G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

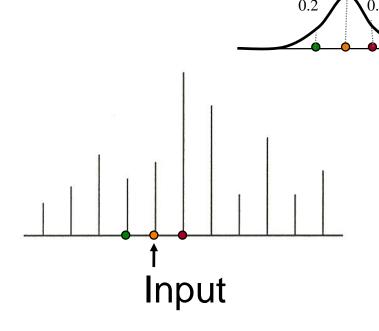


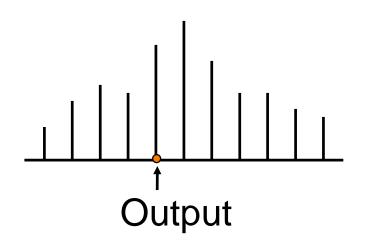


0.4

Filter

$$G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

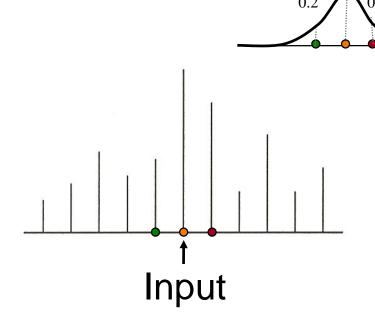


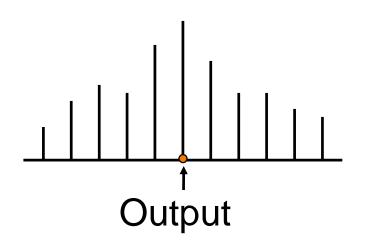


0.4

Filter

$$G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

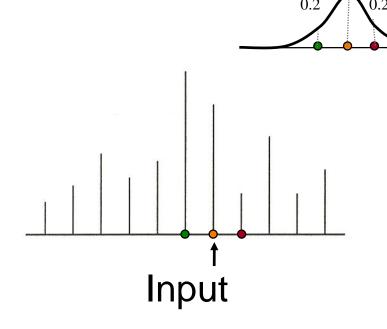


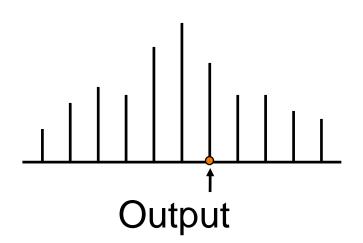


0.4

Filter

$$G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$



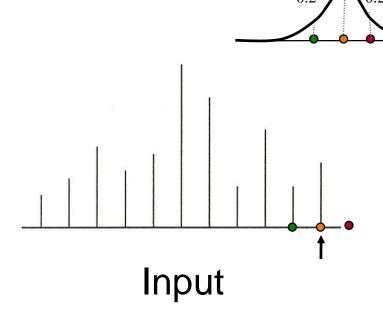


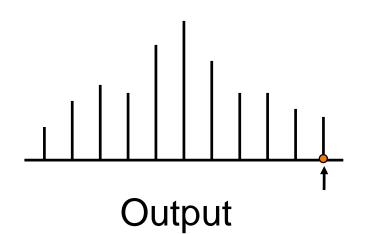
0.4

Filter

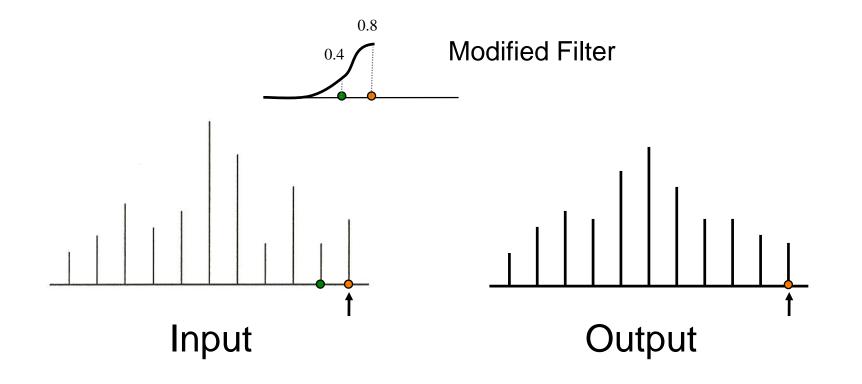
What if filter extends beyond boundary?

$$G(x,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$





What if filter extends beyond boundary?



Output contains samples from smoothed input

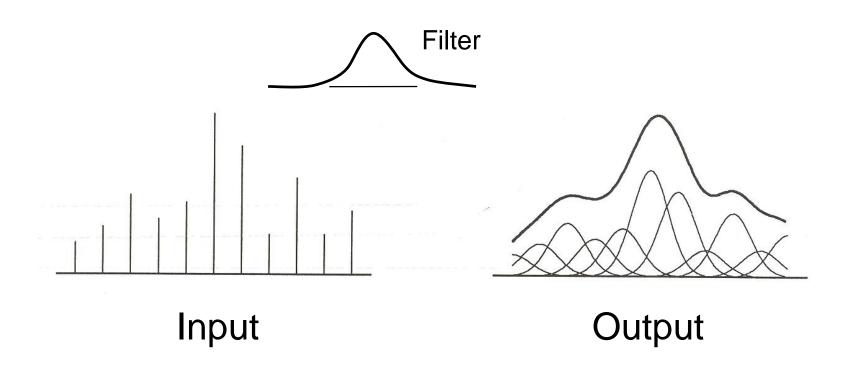
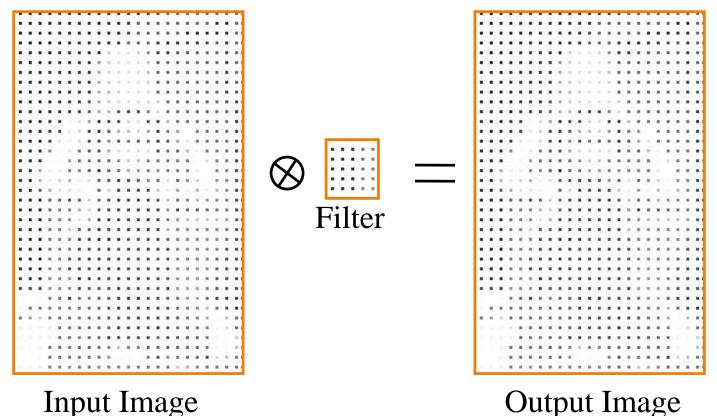


Figure 2.4 Wolberg

Linear Filtering

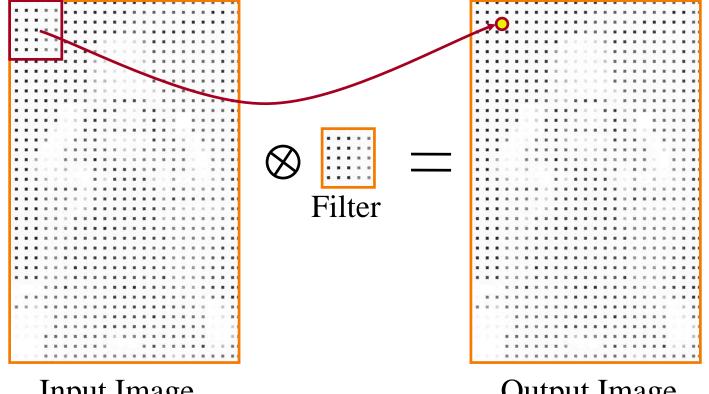
2D Convolution

o Each output pixel is a linear combination of input pixels in 2D neighborhood with weights prescribed by a filter



2D Convolution

o Each output pixel is a linear combination of input pixels in 2D neighborhood with weights prescribed by a filter

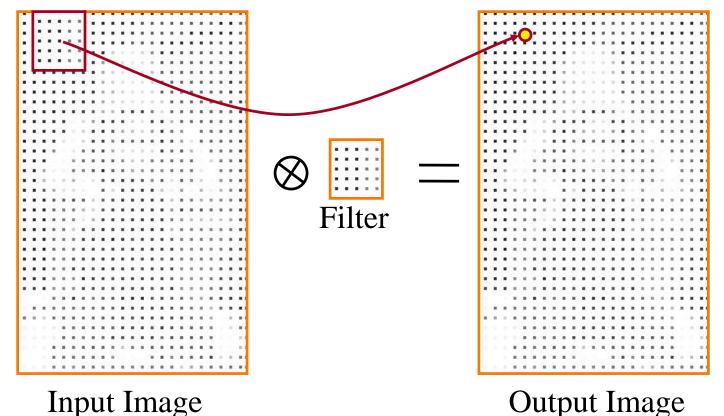


Input Image

Output Image

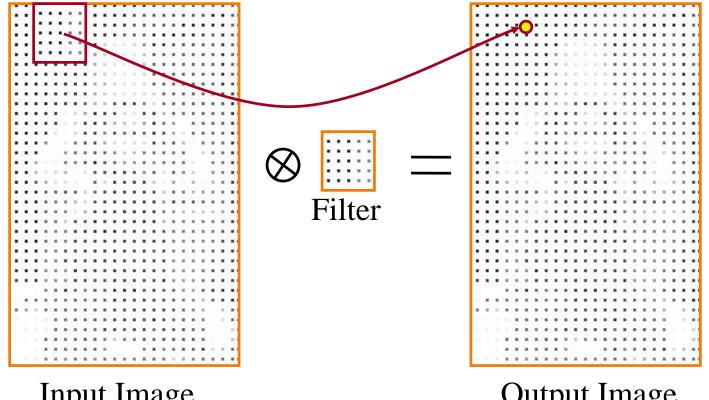
2D Convolution

o Each output pixel is a linear combination of input pixels in 2D neighborhood with weights prescribed by a filter



2D Convolution

o Each output pixel is a linear combination of input pixels in 2D neighborhood with weights prescribed by a filter

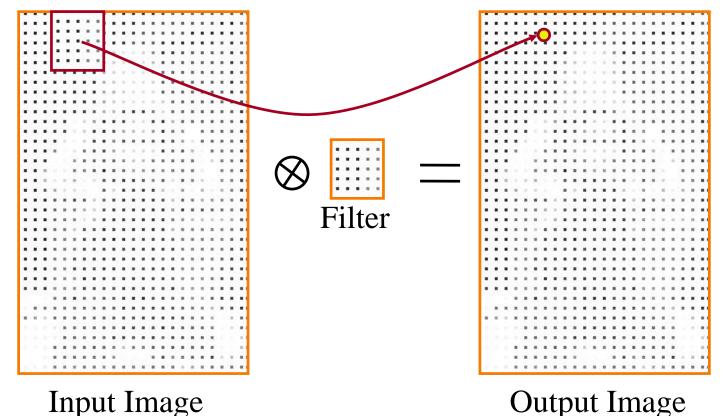


Input Image

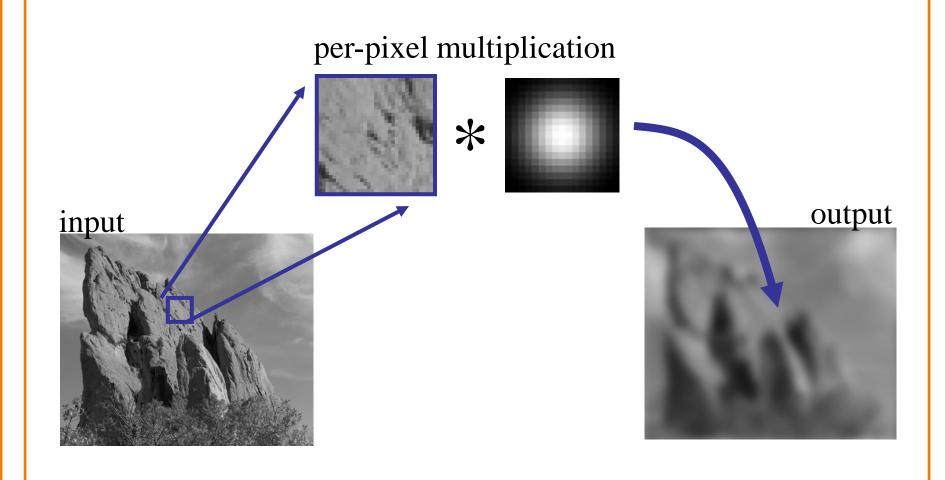
Output Image

2D Convolution

o Each output pixel is a linear combination of input pixels in 2D neighborhood with weights prescribed by a filter



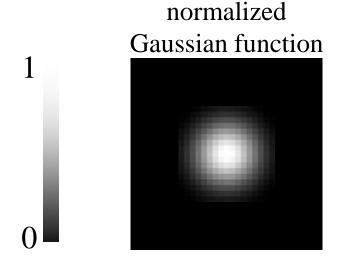
Gaussian Blur



Gaussian Blur

Output value is weighted sum of values in neighborhood of input image

$$Blur(I_{\mathbf{p}}, \sigma) = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G(\|\mathbf{p} - \mathbf{q}\|, \sigma) I_{\mathbf{q}}$$



- Many interesting linear filters
 - Blur
 - Edge detect
 - Sharpen
 - Emboss
 - etc.

Blur

Convolve with a 2D Gaussian filter



Original

Blur

Filter =
$$\begin{bmatrix} 1/& 2/& 1/\\ /16 & /16 & /16 \\ 2/& 4/& 2/\\ /16 & /16 & /16 \\ 1/& 2/& 1/\\ /16 & /16 & /16 \end{bmatrix}$$

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Edge Detection

Convolve with a 2D Laplacian filter that finds differences between neighbor pixels

Original

Detect edges

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpen

Sum detected edges with original image

Original

Sharpened

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Emboss

Convolve with a filter that highlights gradients in particular directions



Original

Embossed

$$Filter = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Side Note: Separable Filters

Some filters are separable (e.g., Gaussian)

- First, apply 1-D convolution across every row
- Then, apply 1-D convolution across every column
- HUGE impact on performance (when kernel is big)

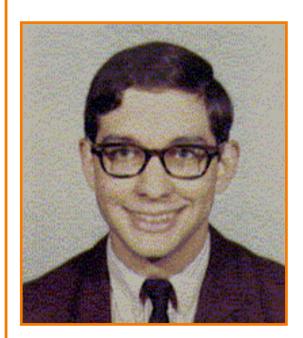
Image Processing Operations

- Luminance
 - Brightness
 - Contrast.
 - Gamma
 - Histogram equalization
- Color
 - Grayscale
 - Saturation
 - White balance

- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Non-Linear Filtering

Each output pixel is a non-linear function of input pixels in neighborhood (filter depends on input)



Original

Paint

Stained Glass

Median Filter

Each output pixel is median of input pixels in neighborhood

original image

1px median filter

3px median filter

10px median filter

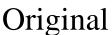
Bilateral Filter

Gaussian blur uses same filter for all pixels Blurs across edges as much as other areas

Gaussian Blur

Bilateral Filter

Gaussian blur uses same filter for all pixels Prefer a filter that preserves edges (adapts to content)

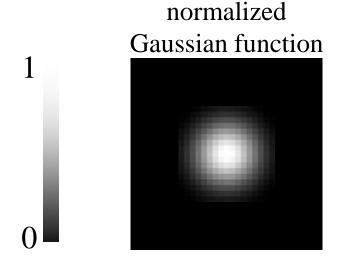


Bilateral Filter

Gaussian Blur

Output value is weighted sum of values in neighborhood of input image

$$Blur(I_{\mathbf{p}}, \sigma) = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G(\|\mathbf{p} - \mathbf{q}\|, \sigma) I_{\mathbf{q}}$$



Bilateral Filter

Combine Gaussian filtering in both spatial domain and color domain

Bilateral Filtering

Combine Gaussian filtering in both spatial domain and color domain

Bilateral filter weights at the central pixel



input

$$\sigma_{\rm r} = 0.1$$

 $\sigma_{\rm r} = 0.25$

 $\sigma_{\rm r} = \infty$ (Gaussian blur)

 $\sigma_{\rm s} = 2$



Image Processing Operations

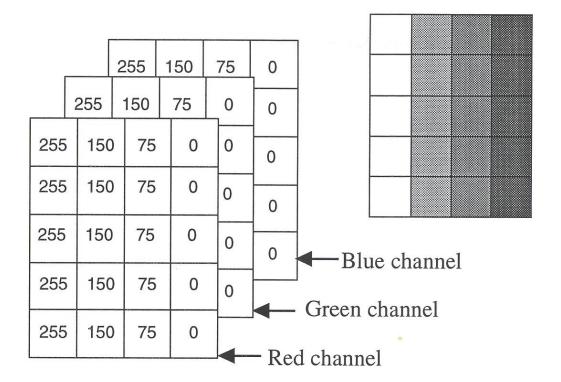
- Luminance
 - Brightness
 - Contrast.
 - Gamma
 - Histogram equalization
- Color
 - Grayscale
 - Saturation
 - White balance

- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Non-linear filtering
 - Median
 - Bilateral filter
- Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Quantization

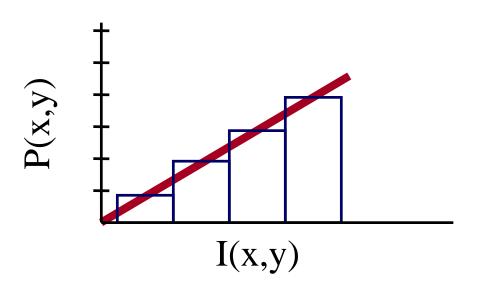
Reduce intensity resolution

- o Frame buffers have limited number of bits per pixel
- o Physical devices have limited dynamic range

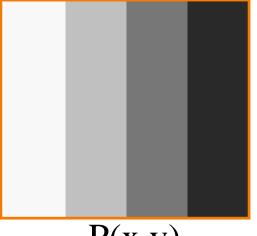


Uniform Quantization

P(x, y) = round(I(x, y))
where round() chooses nearest
value that can be represented.



I(x,y)

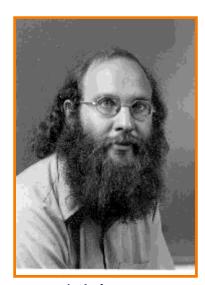


P(x,y) (2 bits per pixel)

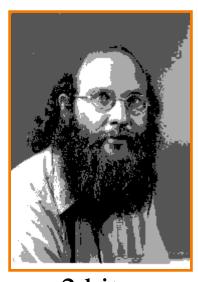
Uniform Quantization

Images with decreasing bits per pixel:

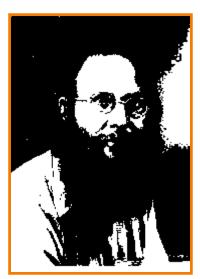
8 bits



4 bits



2 bits



1 bit

Notice contouring.

Reducing Effects of Quantization

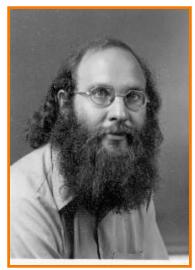
Intensity resolution / spatial resolution tradeoff

- Dithering
 - o Random dither
 - o Ordered dither
 - o Error diffusion dither
- Halftoning
 - o Classical halftoning

Dithering

Distribute errors among pixels

- o Exploit spatial integration in our eye
- o Display greater range of perceptible intensities



Original (8 bits)

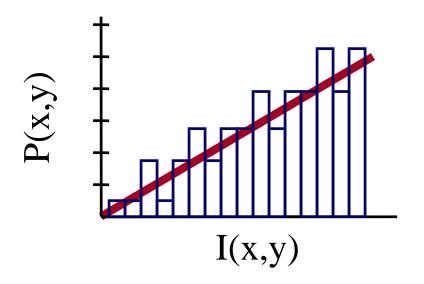
Uniform
Quantization
(1 bit)

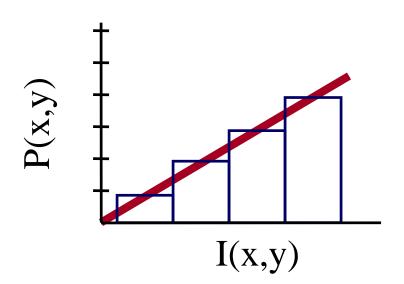
Floyd-Steinberg
Dither
(1 bit)

Random Dither

Randomize quantization errors

o Errors appear as noise

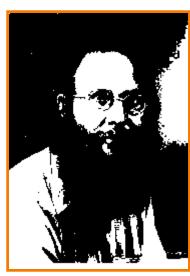




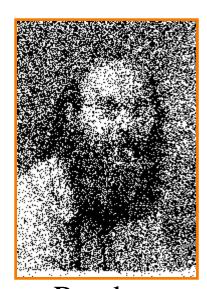
$$P(x, y) = round(I(x, y) + noise(x,y))$$

Random Dither

Original (8 bits)



Uniform
Quantization
(1 bit)



Random
Dither
(1 bit)

Ordered Dither

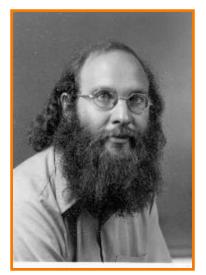
Pseudo-random quantization errors

- o Matrix stores pattern of threshholds
- o Pseudo-code for 1-bit output:

$$\begin{array}{l} \mathbf{i} = \mathbf{x} \mod \mathbf{n} \\ \mathbf{j} = \mathbf{y} \mod \mathbf{n} \\ \text{thresh} = \left(\mathbf{D}(\mathbf{i},\mathbf{j}) + 1 \right) / \left(\mathbf{n}^2 + 1 \right) \\ \text{if } (\mathbf{I}(\mathbf{x},\mathbf{y}) > \text{thresh}) \\ \mathbf{P}(\mathbf{x},\mathbf{y}) = 1 \\ \text{else} \\ \mathbf{P}(\mathbf{x},\mathbf{y}) = 0 \\ \end{array}$$

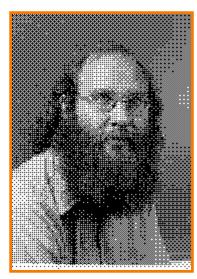
o Can be generalized to n-bit output, by comparing quantization error to threshhold.

Ordered Dither



Original (8 bits)

Random
Dither
(1 bit)



Ordered Dither (1 bit)

Ordered Dither

Recursion for Bayer's ordered dither matrices

$$D_{n} = \begin{bmatrix} 4D_{n/2} + D_{2}(1,1)U_{n/2} & 4D_{n/2} + D_{2}(1,2)U_{n/2} \\ 4D_{n/2} + D_{2}(2,1)U_{n/2} & 4D_{n/2} + D_{2}(2,2)U_{n/2} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \qquad D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

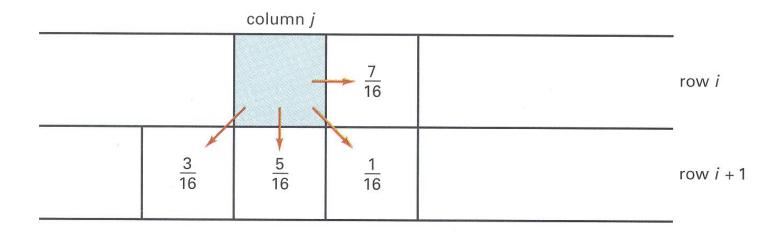
4x4 matrix gives 17 gray levels:

https://en.wikipedia.org/wiki/Ordered dithering

Error Diffusion Dither

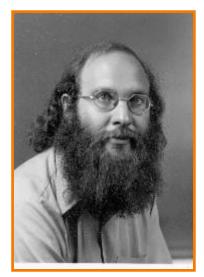
Spread quantization error over neighbor pixels

- o Error dispersed to pixels right and below
- o Floyd-Steinberg weights:



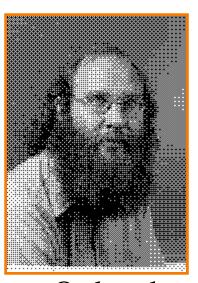
$$3/16 + 5/16 + 1/16 + 7/16 = 1.0$$

Error Diffusion Dither

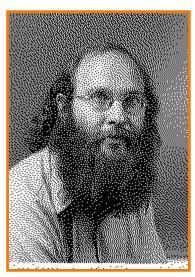


Original (8 bits)

Random
Dither
(1 bit)



Ordered Dither (1 bit)



Floyd-Steinberg
Dither
(1 bit)

Summary

- Color transformations
 - Different color spaces useful for different operations
- Filtering
 - Compute new values for image pixels based on function of old values in neighborhood
- Dithering
 - Reduce visual artifacts due to quantization
 - Distribute errors among pixels
 Exploit spatial integration in our eye