
Matthias Teschner

Computer Science Department
University of Freiburg

Image Processing and Computer Graphics

Projections and
Transformations in OpenGL

University of Freiburg – Computer Science Department – Computer Graphics - 2

Motivation

 for the rendering of objects in 3D space,
a planar view has to be generated

 3D space is projected onto a 2D plane considering
external and internal camera parameters
 position, orientation, focal length

 in homogeneous notation, 3D projections can be
represented with a 4x4 transformation matrix

University of Freiburg – Computer Science Department – Computer Graphics - 3

Examples

 left images
 3D scene with

a view volume

 right images
 projections onto

the viewplane

 top-right
 parallel projection

 top-bottom
 perspective projection

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 4

Outline

 2D projection

 3D projection

 OpenGL projection matrix

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 5

Projection in 2D

 a 2D projection from v onto
l maps a point p onto p'

 p' is the intersection of
the line through p
and v with line l

 v is the viewpoint,
center of perspectivity

 l is the viewline
 the line through p

and v is a projector
 v is not on the line l, p ≠ v

University of Freiburg – Computer Science Department – Computer Graphics - 6

Projection in 2D

 if the homogeneous component of the viewpoint v
is not equal to zero, we have a perspective projection
 projectors are not parallel

 if v is at infinity, we have a parallel projection
 projectors are parallel

perspective projection parallel projection

University of Freiburg – Computer Science Department – Computer Graphics - 7

Classification

 location of viewpoint and orientation of the viewline
determine the type of projection

 parallel (viewpoint at infinity, parallel projectors)
 orthographic (viewline orthogonal to the projectors)
 oblique (viewline not orthogonal to the projectors)

 perspective (non-parallel projectors)
 one-point

(viewline intersects one principal axis,
i.e. viewline is parallel to a principal axis, one vanishing point)

 two-point
(viewline intersects two principal axis, two vanishing points)

University of Freiburg – Computer Science Department – Computer Graphics - 8

General Case

 a 2D projection is
represented by matrix

University of Freiburg – Computer Science Department – Computer Graphics - 9

Example

 e.g. d=-1, (1,2)T is mapped to (0,1)T

University of Freiburg – Computer Science Department – Computer Graphics - 10

Discussion

 matrices M and M represent the same
transformation

 therefore, and represent

the same transformation

 x is mapped to zero, y is scaled depending on x
 moving d to infinity results in parallel projection

University of Freiburg – Computer Science Department – Computer Graphics - 11

Discussion

 parallel projection

University of Freiburg – Computer Science Department – Computer Graphics - 12

Discussion

maps p to p'x = 0

maps p to p'y = -d py

maps p with pw=1 to p'w = px - d

University of Freiburg – Computer Science Department – Computer Graphics - 13

Discussion

 2D transformation in homogeneous form

 wx and wy map the homogeneous component w
of a point to a value w' that depends on x and y

 therefore, the scaling of a point depends on x and / or y

 in perspective 3D projections, this is generally employed
to scale the x- and y- component with respect to z,
its distance to the viewer

University of Freiburg – Computer Science Department – Computer Graphics - 14

Outline

 2D projection

 3D projection

 OpenGL projection matrix

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 15

Projection in 3D

 a 3D projection from v onto
n maps a point p onto p'

 p' is the intersection of
the line through p
and v with plane n

 v is the viewpoint,
center of perspectivity

 n is the viewplane

 the line through p
and v is a projector

 v is not on the plane n, p ≠ v

University of Freiburg – Computer Science Department – Computer Graphics - 16

General Case

 a 3D projection is
represented by
a matrix

University of Freiburg – Computer Science Department – Computer Graphics - 17

Example

 e.g. d=-1, (1,2,0)T is mapped to (0,1,0)T

University of Freiburg – Computer Science Department – Computer Graphics - 18

Example

 parallel projection onto the plane z = 0 with
viewpoint / viewing direction v = (0,0,1,0)T

 x- and y-component are unchanged, z is mapped to zero

 remember that M and M with, e. g., =-1 represent
the same transformation

University of Freiburg – Computer Science Department – Computer Graphics - 19

Outline

 2D projection

 3D projection

 OpenGL projection matrix
 perspective projection

 parallel projection

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 20

View Volume

 in OpenGL, the projection transformation maps
a view volume to the canonical view volume

 the view volume is specified by its boundary
 left, right, bottom, top, near far

 the canonical view volume is a cube from (-1,-1,-1) to
(1,1,1)

[Song Ho Ahn]

(l, t, f)

(x, y, f)

this transformation implements
orthographic projection

this transformation implements
perspective projection

University of Freiburg – Computer Science Department – Computer Graphics - 21

OpenGL Projection Transform

 the projection transform maps
 from eye coordinates
 to clip coordinates (w-component is not necessarily one)
 to normalized device coordinates NDC

(x and y are normalized with respect to w,
w is preserved for further processing)

 the projection transform maps
 the x-component of a point from (left, right) to (-1, 1)
 the y-component of a point from (bottom, top) to (-1, 1)
 the z-component of a point from (near, far) to (-1, 1)

 in OpenGL, near and far are negative, so the mapping
incorporates a reflection (change of right-handed to left-handed)

 however, in OpenGL functions, usually the negative
of near and far is specified which is positive

University of Freiburg – Computer Science Department – Computer Graphics - 22

Perspective Projection

 to obtain x- and y-component of a projected point, the
point is first projected onto the near plane (viewplane)

 note that n and f denote the
negative near and far values

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 23

Mapping of xp and yp to (-1, 1)

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 24

Projection Matrix

 from

 we get

 with

clip coordinates

normalized device
coordinates

University of Freiburg – Computer Science Department – Computer Graphics - 25

Mapping of ze to (-1, 1)

 ze is mapped from (near, far) or (-n, -f) to (-1, 1)

 the transform does not depend on xe and ye

 so, we have to solve for A and B in

University of Freiburg – Computer Science Department – Computer Graphics - 26

Mapping of ze to (-1, 1)

 ze=-n with we=1 is mapped to zn=-1

 ze=-f with we=1 is mapped to zf=1

 the complete matrix is

University of Freiburg – Computer Science Department – Computer Graphics - 27

Perspective Projection Matrix

 the matrix

transforms the view
volume, the pyramidal
frustum to the
canonical view
volume

[Song Ho Ahn]

pyramidal frustum

University of Freiburg – Computer Science Department – Computer Graphics - 28

Perspective Projection Matrix

 projection matrix for negated values for n and f (OpenGL)

 projection matrix for actual values for n and f

University of Freiburg – Computer Science Department – Computer Graphics - 29

Symmetric Setting

 the matrix simplifies for r = -l and t = -b

University of Freiburg – Computer Science Department – Computer Graphics - 30

Near Plane

 nonlinear mapping of ze :

 varying resolution / accuracy due to fix-point
representation of depth values in the depth buffer

 do not move the near plane too close to zero

ze ze ze

zn zn zn

University of Freiburg – Computer Science Department – Computer Graphics - 31

Far Plane

 setting the far plane to infinity is not too critical

ze

zn

University of Freiburg – Computer Science Department – Computer Graphics - 32

Outline

 2D projection

 3D projection

 OpenGL projection matrix
 perspective projection

 parallel projection

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 33

Parallel Projection

 the view volume is represented by a cuboid
 left, right, bottom, top, near, far

 the projection transform maps the
cuboid to the canonical view volume

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 34

Mapping of xe, ye, ze to (-1,1)

 all components of a point in eye coordinates are
linearly mapped to the range of (-1,1)

 linear in xe, ye, ze

 combination of scale and translation

[Song Ho Ahn]

University of Freiburg – Computer Science Department – Computer Graphics - 35

Orthographic Projection Matrix

 general form

 simplified form for a symmetric view volume

University of Freiburg – Computer Science Department – Computer Graphics - 36

Outline

 2D projection

 3D projection

 OpenGL projection matrix

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 37

OpenGL Matrices

 objects are transformed from object to eye
space with the GL_MODELVIEW matrix

 objects are transformed from eye space to
clip space with the GL_PROJECTION matrix

 colors are transformed with the color matrix GL_COLOR

 texture coordinates are transformed with the texture
matrix GL_TEXTURE

University of Freiburg – Computer Science Department – Computer Graphics - 38

Matrix Stack

 each matrix type has a stack

 the matrix on top of the stack is used

 glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(left, right, bottom, top, near, far);

choose a matrix stack

the top element is replaced with I4

projection matrix P is generated
the top element on the stack is
multiplied with P resulting in I4P

University of Freiburg – Computer Science Department – Computer Graphics - 39

Matrix Stack

 glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(x,y,z);

glRotatef(alpha,1,0,0);

 note that objects are rotated by R,
followed by the translation T

choose a matrix stack

the top element is replaced with I4

translation matrix T is generated
the top element on the stack is
multiplied with T resulting in I4T

rotation matrix R is generated
the top element on the stack is
multiplied with R resulting in I4T R

University of Freiburg – Computer Science Department – Computer Graphics - 40

Matrix Stack

 glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(x,y,z);

glRotatef(alpha,1,0,0);

glPush();

glTranslatef(x,y,z);

glPop();

choose a matrix stack

the top element is replaced with I4

the top element is I4T

the top element is I4TR

the top element I4TR
is pushed into the stack
the newly generated top element
is initialized with I4TR

the top element is I4TRT

the top element is replaced by
the previously stored element I4TR

University of Freiburg – Computer Science Department – Computer Graphics - 41

OpenGL Matrix Functions

 glPushMatrix(): push the current matrix into the current matrix stack.

 glPopMatrix(): pop the current matrix from the current matrix stack.

 glLoadIdentity(): set the current matrix to the identity matrix.

 glLoadMatrix{fd}(m): replace the current matrix with the matrix m.

 glLoadTransposeMatrix{fd}(m) : replace the current matrix with the row-
major ordered matrix m.

 glMultMatrix{fd}(m): multiply the current matrix by the matrix m, and update
the result to the current matrix.

 glMultTransposeMatrix{fd}(m): multiply the current matrix by the row-major
ordered matrix m, and update the result to the current matrix.

 glGetFloatv(GL_MODELVIEW_MATRIX, m): return 16 values of
GL_MODELVIEW matrix to m.

 note that OpenGL functions expect column-major matrices
in contrast to commonly used row-major matrices

University of Freiburg – Computer Science Department – Computer Graphics - 42

Modelview Example

 objects are transformed with V-1M

 V=TvRv

 M1..4=T1..4R1..4

 implementation
 choose the GL_MODELVIEW stack

 initialize with I4

 rotate with Rv
-1

 translate with Tv
-1

 push

 translate with T1

 rotate with R1

 render object M1

 pop

 …

M1
M2

M3

M4
V

[Akenine-Moeller et al.:
Real-time Rendering]

the camera is oriented and then translated

objects are oriented and then translated

I4

Rv
-1

Rv
-1 ·Tv

-1 = V-1

Rv
-1 · Tv

-1

Rv
-1 · Tv

-1 · T1

Rv
-1 · Tv

-1 · T1 · R1

Rv
-1 · Tv

-1

University of Freiburg – Computer Science Department – Computer Graphics - 43

Summary

 2D projection

 3D projection

 OpenGL projection matrix
 perspective projection

 parallel projection

 OpenGL transformation matrices

University of Freiburg – Computer Science Department – Computer Graphics - 44

References

 Duncan Marsh: "Applied Geometry for Computer
Graphics and CAD", Springer Verlag, Berlin, 2004.

 Song Ho Ahn: "OpenGL", http://www.songho.ca/ .

