Image Processing and Computer Graphics **Projections and Transformations in OpenGL**

Matthias Teschner

Computer Science Department University of Freiburg

Albert-Ludwigs-Universität Freiburg

FREIBURG

Motivation

- for the rendering of objects in 3D space, a planar view has to be generated
- 3D space is projected onto a 2D plane considering external and internal camera parameters
 - position, orientation, focal length
- in homogeneous notation, 3D projections can be represented with a 4x4 transformation matrix

Examples

- left images
 - 3D scene with a view volume
- right images
 - projections onto the viewplane
- top-right
 - parallel projection
- top-bottom
 - perspective projection

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- OpenGL transformation matrices

Projection in 2D

- a 2D projection from v onto I maps a point **p** onto **p'**
- p' is the intersection of the line through **p** and **v** with line **I**
- v is the viewpoint, center of perspectivity
- I is the viewline
- the line through p and v is a projector
- **v** is not on the line **l**, $\mathbf{p} \neq \mathbf{v}$

 $\mathbf{l} = \{ax + by + c = 0\} = (a, b, c)^T$

Projection in 2D

- if the homogeneous component of the viewpoint v
 is not equal to zero, we have a perspective projection
 projectors are not parallel
- if **v** is at infinity, we have a parallel projection
 - projectors are parallel

Classification

- location of viewpoint and orientation of the viewline determine the type of projection
- parallel (viewpoint at infinity, parallel projectors)
 - orthographic (viewline orthogonal to the projectors)
 - oblique (viewline not orthogonal to the projectors)
- perspective (non-parallel projectors)
 - one-point
 - (viewline intersects one principal axis,
 - i.e. viewline is parallel to a principal axis, one vanishing point)
 - two-point
 - (viewline intersects two principal axis, two vanishing points)

General Case

University of Freiburg – Computer Science Department – Computer Graphics - 9

BURG

matrices **M** and λ **M** represent the same transformation ($\lambda \mathbf{Mp} = \lambda \mathbf{p'}$) • therefore, $\begin{pmatrix} 0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ represent the same transformation $\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ w \end{array}\right) = \left(\begin{array}{c} 0 \\ y \\ -\frac{x}{2} + w \end{array}\right) \sim \left(\begin{array}{c} 0 \\ \frac{y}{w - \frac{x}{d}} \end{array}\right)$ • x is mapped to zero, y is scaled depending on x moving d to infinity results in parallel projection $\lim_{d \to \pm \infty} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

parallel projection

$$\mathbf{v} = (-1, 0, 0)^{T}$$

$$\mathbf{v} = (-1, 0, 0)$$

$$\mathbf{p}' = (0, p'_{y}, 1)^{T} \quad \mathbf{p} = (p_{x}, p_{y}, 1)^{T}$$

$$\mathbf{x}$$

 $\mathbf{M} = \mathbf{v}\mathbf{l}^{\perp} - (\mathbf{l}\cdot\mathbf{v})\mathbf{I}_{3}$ $\mathbf{M} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} (1,0,0) - \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \right) \mathbf{I}_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ UNI FREIBURG

2D transformation in homogeneous form

$$\mathbf{M} = \left(\begin{array}{cccc} m_{11} & m_{12} & t_x \\ m_{21} & m_{22} & t_y \\ w_x & w_y & h \end{array} \right)$$

- w_x and w_y map the homogeneous component w of a point to a value w' that depends on x and y
- therefore, the scaling of a point depends on x and / or y
- in perspective 3D projections, this is generally employed to scale the x- and y- component with respect to z, its distance to the viewer

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- OpenGL transformation matrices

Projection in 3D

- a 3D projection from v onto
 n maps a point p onto p'
- p' is the intersection of the line through p and v with plane n
- v is the viewpoint, center of perspectivity
- n is the viewplane
- the line through p and v is a projector
- **v** is not on the plane $\mathbf{n}, \mathbf{p} \neq \mathbf{v}$

General Case

 a 3D projection is represented by a matrix $\mathbf{M} = \mathbf{v}\mathbf{n}^T - (\mathbf{n} \cdot \mathbf{v})\mathbf{I}_4$

$$\mathbf{v}\mathbf{n}^{T} = \begin{pmatrix} v_{x}a & v_{x}b & v_{x}c & v_{x}d \\ v_{y}a & v_{y}b & v_{y}c & v_{y}d \\ v_{z}a & v_{z}b & v_{z}c & v_{z}d \\ v_{w}a & v_{w}b & v_{w}c & v_{w}d \end{pmatrix}$$
$$(\mathbf{n} \cdot \mathbf{v})\mathbf{I} = (av_{x} + bv_{y} + cv_{z} + dv_{w})$$

$$\mathbf{n} = \{ax + by + cz + d = 0\}$$

= $(a, b, c, d)^T$
$$\mathbf{p} = (p_x, p_y, p_z, 1)^T$$

$$\mathbf{r}$$

$$\mathbf{r}$$

$$\mathbf{r}$$

$$\mathbf{r}$$

$$\mathbf{s}$$

$$1 \quad 0 \quad 0 \quad 0$$

$$0 \quad 1 \quad 0 \quad 0$$

$$0 \quad 0 \quad 1 \quad 0$$

$$0 \quad 0 \quad 0 \quad 1$$

Example

BURG

Example

- **•** parallel projection onto the plane z = 0 with viewpoint / viewing direction $\mathbf{v} = (0,0,1,0)^T$ **•** $\mathbf{n} = \{0x + 0y + 1z + 0 = 0\}$ **•** $\mathbf{v} = (0,0,1,0)^T$ **•** $\mathbf{M} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} (0,0,1,0) \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} \mathbf{I}_4 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$
- x- and y-component are unchanged, z is mapped to zero
- remember that **M** and λ **M** with, e.g., λ =-1 represent the same transformation

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
 - perspective projection
 - parallel projection
- OpenGL transformation matrices

View Volume

- in OpenGL, the projection transformation maps a view volume to the canonical view volume
- the view volume is specified by its boundary
 - left, right, bottom, top, near far
- the canonical view volume is a cube from (-1,-1,-1) to (1,1,1)

this transformation implements this transformation implements orthographic projection perspective projection University of Freiburg – Computer Science Department – Computer Graphics - 20

FRE

OpenGL Projection Transform

- the projection transform maps
 - from eye coordinates
 - to clip coordinates (w-component is not necessarily one)
 - to normalized device coordinates NDC (x and y are normalized with respect to w, w is preserved for further processing)

the projection transform maps

- the x-component of a point from (left, right) to (-1, 1)
- the y-component of a point from (bottom, top) to (-1, 1)
- the z-component of a point from (near, far) to (-1, 1)
 - in OpenGL, near and far are negative, so the mapping incorporates a reflection (change of right-handed to left-handed)
 - however, in OpenGL functions, usually the negative of near and far is specified which is positive

Perspective Projection

 to obtain x- and y-component of a projected point, the point is first projected onto the near plane (viewplane)

 note that n and f denote the negative near and far values
 University of Freiburg – Computer Science Department – Computer Graphics - 22

REIBURG

Mapping of x_p and y_p to (-1, 1)

Projection Matrix

from

$$x_n = \frac{1}{-z_e} \left(\frac{2n}{r-l} x_e + \frac{r+l}{r-l} z_e \right) \quad y_n = \frac{1}{-z_e} \left(\frac{2n}{t-b} y_e + \frac{t+b}{t-b} z_e \right)$$

• We get

$$\begin{pmatrix} x_c \\ y_c \\ z_c \\ w_c \end{pmatrix} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_e \\ y_e \\ z_e \\ w_e \end{pmatrix} \quad \text{clip coordinates}$$
• With

$$\begin{pmatrix} x_n \\ y_n \\ z_n \\ 1 \end{pmatrix} = \begin{pmatrix} x_c/w_c \\ y_c/w_c \\ w_c/w_c \end{pmatrix} \quad \text{normalized device coordinates}$$

Mapping of z_e to (-1, 1)

- z_e is mapped from (near, far) or (-n, -f) to (-1, 1)
- the transform does not depend on x_e and y_e
- so, we have to solve for A and B in

$$\begin{pmatrix} x_c \\ y_c \\ z_c \\ w_c \end{pmatrix} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & A & B \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_e \\ y_e \\ z_e \\ w_e \end{pmatrix}$$

$$z_n = \frac{z_c}{w_c} = \frac{Az_e + Bw_e}{-z_e}$$

Mapping of z_e to (-1, 1)

- $z_e = -n$ with $w_e = 1$ is mapped to $z_n = -1$
- $z_e = -f$ with $w_e = 1$ is mapped to $z_f = 1$

$$\Rightarrow A = -\frac{f+n}{f-n} \quad \Rightarrow B = -\frac{2fn}{f-n}$$

the complete matrix is

$$\begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Perspective Projection Matrix

• the matrix

volume

pyramidal frustum

BURG

[Song Ho Ahn]

Perspective Projection Matrix

projection matrix for negated values for n and f (OpenGL)

$$\left(egin{array}{cccc} rac{2n}{r-l} & 0 & rac{r+l}{r-l} & 0 &
ight) \ 0 & rac{2n}{t-b} & rac{t+b}{t-b} & 0 & 0 \ 0 & 0 & -rac{f+n}{f-n} & -rac{2fn}{f-n} & 0 \ 0 & 0 & -1 & 0 \end{array}
ight)$$

projection matrix for actual values for n and f

$$\begin{pmatrix} \frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Symmetric Setting

the matrix simplifies for r = -l and t = -b

$$\begin{aligned} r+l &= 0 \\ r-l &= 2r \\ t+b &= 0 \\ t-b &= 2t \end{aligned} \Rightarrow \begin{pmatrix} \frac{n}{r} & 0 & 0 & 0 \\ 0 & \frac{n}{t} & 0 & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

FREIBURG

Near Plane

- nonlinear mapping of $z_e : z_n = \frac{f+n}{f-n} + \frac{1}{z_e} \frac{2fn}{f-n}$
- varying resolution / accuracy due to fix-point representation of depth values in the depth buffer

do not move the near plane too close to zero

Far Plane

setting the far plane to infinity is not too critical

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
 - perspective projection
 - parallel projection
- OpenGL transformation matrices

Parallel Projection

- the view volume is represented by a cuboid
 - left, right, bottom, top, near, far

 the projection transform maps the cuboid to the canonical view volume

BURG

Mapping of x_{ρ} , y_{ρ} , z_{ρ} to (-1,1)

 all components of a point in eye coordinates are linearly mapped to the range of (-1,1)

- linear in x_e, y_e, z_e
- combination of scale and translation

Orthographic Projection Matrix

general form

$$\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

simplified form for a symmetric view volume

 $\begin{aligned} r+l &= 0 \\ r-l &= 2r \\ t+b &= 0 \\ t-b &= 2t \end{aligned} \Rightarrow \begin{pmatrix} \frac{1}{r} & 0 & 0 & 0 \\ 0 & \frac{1}{t} & 0 & 0 \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- OpenGL transformation matrices

OpenGL Matrices

- objects are transformed from object to eye space with the GL_MODELVIEW matrix GL_MODELVIEW · p
- objects are transformed from eye space to clip space with the GL_PROJECTION matrix GL_PROJECTION · GL_MODELVIEW · p
- colors are transformed with the color matrix GL_COLOR
- texture coordinates are transformed with the texture matrix GL_TEXTURE

Matrix Stack

- each matrix type has a stack
- the matrix on top of the stack is used
- glMatrixMode(GL PROJECTION); glLoadIdentity(); glFrustum(left, right, bottom, top, near, far);

choose a matrix stack

the top element is replaced with I_{Λ}

projection matrix P is generated the top element on the stack is multiplied with P resulting in I_{A} ·P

Matrix Stack

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glTranslatef(x,y,z);

glRotatef(alpha,1,0,0);

choose a matrix stack the top element is replaced with I₄ translation matrix T is generated the top element on the stack is multiplied with T resulting in I₄•T

rotation matrix R is generated the top element on the stack is multiplied with R resulting in $I_4 \cdot T \cdot R$

 note that objects are rotated by R, followed by the translation T

FREIBURG

Matrix Stack

glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(x,y,z);
 glRotatef(alpha,1,0,0);

glPush();

glTranslatef(x,y,z);

glPop();

choose a matrix stack the top element is replaced with I_4 the top element is I_4 . the top element is I_4 .

the top element I₄·T·R is pushed into the stack the newly generated top element is initialized with I₄·T·R

the top element is I₄·T·R·T

the top element is replaced by the previously stored element $I_4 \cdot T \cdot R$

OpenGL Matrix Functions

- glPushMatrix(): push the current matrix into the current matrix stack.
- glPopMatrix (): pop the current matrix from the current matrix stack.
- glLoadIdentity(): set the current matrix to the identity matrix.
- glLoadMatrix { fd } (m) : replace the current matrix with the matrix m.
- glLoadTransposeMatrix { fd } (m) : replace the current matrix with the rowmajor ordered matrix m.
- glMultMatrix{fd} (m): multiply the current matrix by the matrix m, and update the result to the current matrix.
- glMultTransposeMatrix{fd} (m): multiply the current matrix by the row-major ordered matrix m, and update the result to the current matrix.
- glGetFloatv (GL_MODELVIEW_MATRIX, m): return 16 values of GL_MODELVIEW matrix to m.
- note that OpenGL functions expect column-major matrices in contrast to commonly used row-major matrices

Modelview Example

objects are transformed with V⁻¹M

 I_{Δ}

 R_{v}^{-1}

 $R_v^{-1} \cdot T_v^{-1} = V^{-1}$

 $R_v^{-1} \cdot T_v^{-1} \cdot T_1$

 $R_v^{-1} \cdot T_v^{-1} \cdot T_1 \cdot R_1$

 $R_{v}^{-1} \cdot T_{v}^{-1}$

 $R_v^{-1} \cdot T_v^{-1}$

- the camera is oriented and then translated
- $M_{1..4} = T_{1..4} R_{1..4}$ objects are oriented and then translated
- implementation
 - choose the GL_MODELVIEW stack
 - initialize with I₄
 - rotate with R_v⁻¹
 - translate with T_v⁻¹
 - push

 $V=T_vR_v$

- translate with T₁
- rotate with R₁
- render object M₁
- pop
- · · · ·

Summary

- 2D projection
- 3D projection
- OpenGL projection matrix
 - perspective projection
 - parallel projection
- OpenGL transformation matrices

References

- Duncan Marsh: "Applied Geometry for Computer Graphics and CAD", Springer Verlag, Berlin, 2004.
- Song Ho Ahn: "OpenGL", http://www.songho.ca/.