Image Processing and Computer Graphics Projections and
Transformations in OpenGL

Matthias Teschner

Computer Science Department
University of Freiburg

Motivation

- for the rendering of objects in 3D space, a planar view has to be generated
- 3D space is projected onto a 2D plane considering external and internal camera parameters
- position, orientation, focal length
- in homogeneous notation, 3D projections can be represented with a 4x4 transformation matrix

Examples

- left images
- 3D scene with a view volume
- right images
- projections onto the viewplane
- top-right
- parallel projection
- top-bottom
- perspective projection

[Song Ho Ahn]

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- OpenGL transformation matrices

Projection in 2D

- a 2D projection from vonto I maps a point p onto p^{\prime}
- p^{\prime} is the intersection of the line through p and \mathbf{v} with line \mathbf{l}
- v is the viewpoint, center of perspectivity
- \quad is the viewline
- the line through p and v is a projector

- v is not on the line $I, p \neq v$

Projection in 2D

- if the homogeneous component of the viewpoint \mathbf{v} is not equal to zero, we have a perspective projection
- projectors are not parallel
- if v is at infinity, we have a parallel projection
- projectors are parallel

perspective projection
parallel projection

Classification

- location of viewpoint and orientation of the viewline determine the type of projection
- parallel (viewpoint at infinity, parallel projectors)
- orthographic (viewline orthogonal to the projectors)
- oblique (viewline not orthogonal to the projectors)
- perspective (non-parallel projectors)
- one-point
(viewline intersects one principal axis,
i.e. viewline is parallel to a principal axis, one vanishing point)
- two-point
(viewline intersects two principal axis, two vanishing points)

General Case

- a 2D projection is represented by matrix $\mathbf{M}=\mathbf{v} \mathbf{l}^{T}-(\mathbf{l} \cdot \mathbf{v}) \mathbf{I}_{3}$

$$
\mathbf{v 1}^{T}=\left(\begin{array}{lll}
v_{x} a & v_{v} b & v_{v} c \\
v_{y} a & v_{y^{b}} b & v_{y^{\prime}} c \\
v_{w} a & v_{w} b & v_{w} c
\end{array}\right)
$$

$$
\mathbf{l}=\{a x+b y+c=0\}=(a, b, c)^{T}
$$

$$
(\mathbf{l} \cdot \mathbf{v}) \mathbf{I}=\left(a v_{x}+b v_{y}+c v_{w}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example

- $\mathbf{M}=\left(\begin{array}{l}d \\ 0 \\ 1\end{array}\right)(1,0,0)-\left(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}d \\ 0 \\ 1\end{array}\right)\right) \mathbf{I}_{3}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d\end{array}\right)$
- e.g. $d=-1,(1,2)^{\top}$ is mapped to $(0,1)^{\top}$

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

Discussion

- matrices M and $\lambda \mathrm{M}$ represent the same transformation $\left(\lambda \mathbf{M} \mathbf{p}=\lambda \mathbf{p}^{\prime}\right)$
- therefore, $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d\end{array}\right)$ and $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{d} & 0 & 1\end{array}\right)$ represent the same transformation
- $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{d} & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ w\end{array}\right)=\left(\begin{array}{c}0 \\ y \\ -\frac{y}{d}+w\end{array}\right) \sim\binom{0}{\frac{y}{w-\frac{x}{d}}}$
- x is mapped to zero, y is scaled depending on x
- moving d to infinity results in parallel projection
$\lim _{d \rightarrow \pm \infty}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{d} & 0 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Discussion

- parallel projection

$\mathbf{M}=\mathbf{v} \mathbf{l}^{T}-(\mathbf{l} \cdot \mathbf{v}) \mathbf{I}_{3}$
$\mathbf{M}=\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)(1,0,0)-\left(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)\right) \mathbf{I}_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Discussion

■ $\left.\begin{array}{rl}\mathbf{l} & =\{1 x+0 y+0=0\} \\ & =(1,0,0)^{T}\end{array}\right\}$

$$
\mathbf{p}=\left(p_{x}, p_{y}, 1\right)^{T}
$$

$p_{x}^{\prime}=0 \quad \frac{p_{y}}{p_{x}-d}=\frac{p_{y}^{\prime}}{-d} \Rightarrow p_{y}^{\prime}=\frac{-d p_{y}}{p_{x}-d} \quad p_{w}=1 \Rightarrow p_{w}^{\prime}=p_{x}-d$
$\Rightarrow \mathbf{M}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -d & 0 \\ 1 & 0 & -d\end{array}\right) \quad \begin{aligned} & \text { maps } p \text { to } p_{x}^{\prime}=0 \\ & \text { maps } p \text { to } p_{y}^{\prime}=-d p_{y} \\ & \text { maps } p \text { with } p_{w}=1 \text { to } p_{w}^{\prime}=p_{x}-d\end{aligned}$
University of Freiburg - Computer Science Department - Computer Graphics - 12

Discussion

- 2D transformation in homogeneous form

$$
\mathbf{M}=\left(\begin{array}{ccc}
m_{11} & m_{12} & t_{x} \\
m_{21} & m_{22} & t_{y} \\
w_{x} & w_{y} & h
\end{array}\right)
$$

- w_{x} and w_{y} map the homogeneous component w of a point to a value w ' that depends on x and y
- therefore, the scaling of a point depends on x and / or y
- in perspective 3D projections, this is generally employed to scale the x - and y-component with respect to z, its distance to the viewer

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- OpenGL transformation matrices

Projection in 3D

- a 3D projection from vonto

$$
\mathbf{n}=\{a x+b y+c z+d=0\}
$$ n maps a point p onto p^{\prime}

- p^{\prime} is the intersection of the line through p and \mathbf{v} with plane \mathbf{n}
- v is the viewpoint, center of perspectivity
- n is the viewplane
- the line through p
 and v is a projector
- v is not on the plane $n, p \neq v$

General Case

- a 3D projection is represented by
a matrix

$$
\mathbf{M}=\mathbf{v n}^{T}-(\mathbf{n} \cdot \mathbf{v}) \mathbf{I}_{4}
$$

$$
\mathbf{v n}^{T}=\left(\begin{array}{cccc}
v_{x} a & v_{x} b & v_{x} c & v_{x} d \\
v_{y} a & v_{y} b & v_{y} c & v_{y} d \\
v_{z} a & v_{z} b & v_{z} c & v_{z} d \\
v_{w} a & v_{w} b & v_{w} c & v_{w} d
\end{array}\right)
$$

$$
(\mathbf{n} \cdot \mathbf{v}) \mathbf{I}=\left(a v_{x}+b v_{y}+c v_{z}+d v_{w}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example

\mathbf{n}	$=\{a x+b y+c z+d=0\}$
	$=(1,0,0,0)^{T} \uparrow y$
\mathbf{v}	$=(d, 0,0,1) \quad z \quad$

■ $\mathbf{M}=\left(\begin{array}{l}d \\ 0 \\ 0 \\ 1\end{array}\right)(1,0,0,0)-\left(\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}d \\ 0 \\ 0 \\ 1\end{array}\right)\right) \mathbf{I}_{4}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & -d & 0 \\ 1 & 0 & 0 & -d\end{array}\right)$

- e.g. $d=-1,(1,2,0)^{\top}$ is mapped to $(0,1,0)^{\top}$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right)
$$

Example

- parallel projection onto the plane $z=0$ with viewpoint / viewing direction $\mathbf{v}=(0,0,1,0)^{\top}$
$\mathbf{n}=\{0 x+0 y+1 z+0=0\}$
$\mathbf{v}=(0,0,1,0)^{T}$
$\mathbf{M}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)(0,0,1,0)-\left(\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right) \mathbf{I}_{4}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$
- x - and y-component are unchanged, z is mapped to zero
- remember that M and $\lambda \mathrm{M}$ with, e. g., $\lambda=-1$ represent the same transformation

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- perspective projection
- parallel projection
- OpenGL transformation matrices

View Volume

- in OpenGL, the projection transformation maps a view volume to the canonical view volume
- the view volume is specified by its boundary
- left, right, bottom, top, near far
- the canonical view volume is a cube from ($-1,-1,-1$) to

this transformation implements orthographic projection

OpenGL Projection Transform

- the projection transform maps
- from eye coordinates
- to clip coordinates (w-component is not necessarily one)
- to normalized device coordinates NDC (x and y are normalized with respect to w , w is preserved for further processing)
- the projection transform maps
- the x-component of a point from (left, right) to $(-1,1)$
- the y-component of a point from (bottom, top) to $(-1,1)$
- the z-component of a point from (near, far) to (-1, 1)
- in OpenGL, near and far are negative, so the mapping incorporates a reflection (change of right-handed to left-handed)
- however, in OpenGL functions, usually the negative of near and far is specified which is positive

Perspective Projection

- to obtain x - and y-component of a projected point, the point is first projected onto the near plane (viewplane)

$$
\frac{x_{p}}{x_{e}}=\frac{-n}{z_{e}} \Rightarrow x_{p}=\frac{n x_{e}}{-z_{e}} \quad \frac{y_{p}}{y_{e}}=\frac{-n}{z_{e}} \Rightarrow y_{p}=\frac{n y_{e}}{-z_{e}}
$$

- note that n and f denote the negative near and far values

Mapping of x_{p} and y_{p} to $(-1,1)$

$$
x_{n}=\alpha x_{p}+\beta
$$

$$
\alpha=\frac{1-(-1)}{r-l}
$$

$$
\beta=-\frac{r+l}{r-l}
$$

$$
x_{n}=\frac{2 x_{p}}{r-l}-\frac{r+l}{r-l}
$$

$$
x_{n}=\frac{1}{-z_{e}}\left(\frac{2 n}{r-l} x_{e}+\frac{r+l}{r-l} z_{e}\right)
$$

$$
\begin{aligned}
y_{n} & =\alpha y_{p}+\beta \\
\alpha & =\frac{1-(-1)}{b-t} \\
\beta & =-\frac{t+b}{t-b} \\
y_{n} & =\frac{2 y_{p}}{t-b}-\frac{t+b}{t-b} \\
y_{n} & =\frac{1}{-z_{e}}\left(\frac{2 n}{t-b} y_{e}+\frac{t+b}{t-b} z_{e}\right)
\end{aligned}
$$

[Song Ho Ahn]

Projection Matrix

- from

$$
x_{n}=\frac{1}{-z_{e}}\left(\frac{2 n}{r-l} x_{e}+\frac{r+l}{r-l} z_{e}\right) \quad y_{n}=\frac{1}{-z_{e}}\left(\frac{2 n}{t-b} y_{e}+\frac{t+b}{t-b} z_{e}\right)
$$

- we get

$$
\left(\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right)
$$

clip coordinates

- with

$$
\left(\begin{array}{c}
x_{n} \\
y_{n} \\
z_{n} \\
1
\end{array}\right)=\left(\begin{array}{c}
x_{c} / w_{c} \\
y_{c} / w_{c} \\
z_{c} / w_{c} \\
w_{c} / w_{c}
\end{array}\right)
$$

normalized device coordinates

Mapping of z_{e} to $(-1,1)$

- z_{e} is mapped from (near, far) or ($-n,-f$) to ($-1,1$)
- the transform does not depend on x_{e} and y_{e}
- so, we have to solve for A and B in

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & A & B \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right) \\
& z_{n}=\frac{z_{c}}{w_{c}}=\frac{A z_{e}+B w_{e}}{-z_{e}}
\end{aligned}
$$

Mapping of z_{e} to $(-1,1)$

- $\mathrm{z}_{\mathrm{e}}=-\mathrm{n}$ with $\mathrm{w}_{\mathrm{e}}=1$ is mapped to $\mathrm{z}_{\mathrm{n}}=-1$
- $z_{e}=-f$ with $w_{e}=1$ is mapped to $z_{f}=1$

$$
\Rightarrow A=-\frac{f+n}{f-n} \Rightarrow B=-\frac{2 f n}{f-n}
$$

- the complete matrix is

$$
\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Perspective Projection Matrix

- the matrix

$$
\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

transforms the view
volume, the pyramidal frustum to the
canonical view volume

Perspective Projection Matrix

- projection matrix for negated values for n and f (OpenGL)

$$
\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

- projection matrix for actual values for n and f

$$
\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{t+b}{t+b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Symmetric Setting

- the matrix simplifies for $r=-l$ and $t=-b$

$$
\begin{aligned}
r+l & =0 \\
r-l & =2 r \\
t+b & =0 \\
t-b & =2 t
\end{aligned} \quad \Rightarrow\left(\begin{array}{cccc}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{n}{t} & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Near Plane

- nonlinear mapping of $\mathrm{z}_{\mathrm{e}}: z_{n}=\frac{f+n}{f-n}+\frac{1}{z_{e}} \frac{2 f n}{f-n}$
- varying resolution / accuracy due to fix-point representation of depth values in the depth buffer

- do not move the near plane too close to zero

Far Plane

- setting the far plane to infinity is not too critical

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right) \\
& f \rightarrow \infty \\
& \Rightarrow\left(\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -1 & -2 n \\
0 & 0 & -1 & 0
\end{array}\right) \\
& z_{n}=1+\frac{2}{z_{e}}
\end{aligned}
$$

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- perspective projection
- parallel projection
- OpenGL transformation matrices

Parallel Projection

- the view volume is represented by a cuboid
- left, right, bottom, top, near, far

[Song Ho Ahn]
- the projection transform maps the cuboid to the canonical view volume

Mapping of x_{e}, y_{e}, z_{e} to $(-1,1)$

- all components of a point in eye coordinates are linearly mapped to the range of $(-1,1)$

$$
x_{n}=\frac{2}{r-l} x_{e}-\frac{r+l}{r-l} \quad y_{n}=\frac{2}{t-b} y_{e}-\frac{t+b}{t-b} \quad z_{n}=-\frac{2}{f-n} z_{e}-\frac{f+n}{f-n}
$$

- linear in x_{e}, y_{e}, z_{e}
- combination of scale and translation

Orthographic Projection Matrix

- general form

$$
\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- simplified form for a symmetric view volume

$$
\begin{aligned}
& r+l=0 \\
& r-l=2 r \\
& t+b=0 \\
& t-b=2 t
\end{aligned}
$$

Outline

- 2D projection
- 3D projection
- OpenGL projection matrix
- OpenGL transformation matrices

OpenGL Matrices

- objects are transformed from object to eye space with the GL_MODELVIEW matrix GL_MODELVIEW • p
- objects are transformed from eye space to clip space with the GL_PROJECTION matrix GL_PROJECTION • GL_MODELVIEW • p
- colors are transformed with the color matrix GL_COLOR
- texture coordinates are transformed with the texture matrix GL_TEXTURE

Matrix Stack

- each matrix type has a stack
- the matrix on top of the stack is used
- glMatrixMode(GL_PROJECTION); glLoadIdentity();
glFrustum(left, right, bottom, top, near, far);
projection matrix P is generated
the top element on the stack is
multiplied with P resulting in $I_{4} \cdot P$

Matrix Stack

- glMatrixMode(GL_MODELVIEW); glLoadIdentity();
glTranslatef(x,y,z);
glRotatef(alpha,1,0,0);
choose a matrix stack
the top element is replaced with I_{4}
translation matrix T is generated the top element on the stack is multiplied with T resulting in $\mathrm{I}_{4} \cdot \mathrm{~T}$
rotation matrix R is generated the top element on the stack is multiplied with R resulting in $I_{4} \cdot T \cdot R$
- note that objects are rotated by R , followed by the translation T

Matrix Stack

- glMatrixMode(GL_MODELVIEW); glLoadIdentity();
glTranslatef(x,y,z);
glRotatef(alpha,1,0,0);
glPush();
glTranslatef(x,y,z);
glPop();
choose a matrix stack
the top element is replaced with I_{4} the top element is $I_{4} \cdot T$
the top element is $I_{4} \cdot T \cdot R$
the top element $I_{4} \cdot T \cdot R$
is pushed into the stack
the newly generated top element is initialized with $I_{4} \cdot T \cdot R$
the top element is $I_{4} \cdot T \cdot R \cdot T$
the top element is replaced by
the previously stored element $I_{4} \cdot T \cdot R$

OpenGL Matrix Functions

- glPushMatrix() : push the current matrix into the current matrix stack.
- glPopMatrix(): pop the current matrix from the current matrix stack.
- glLoadIdentity(): set the current matrix to the identity matrix.
- glLoadMatrix $\{\mathrm{fd}\}(m)$: replace the current matrix with the matrix m.
- glLoadTransposeMatrix\{fd\} (m) : replace the current matrix with the rowmajor ordered matrix m.
- glMultMatrix $\{\mathrm{fd}\}(m)$: multiply the current matrix by the matrix m, and update the result to the current matrix.
- glMultTransposeMatrix\{fd\} (m): multiply the current matrix by the row-major ordered matrix m, and update the result to the current matrix.
- glGetFloatv(GL_MODELVIEW_MATRIX, m) : return 16 values of GL_MODELVIEW matrix to m.
- note that OpenGL functions expect column-major matrices in contrast to commonly used row-major matrices

Modelview Example

- objects are transformed with $\mathrm{V}^{-1} \mathrm{M}$
- $\mathrm{V}=\mathrm{T}_{\mathrm{v}} \mathrm{R}_{\mathrm{v}}$
the camera is oriented and then translated
- $\mathrm{M}_{1.4}=\mathrm{T}_{1.4} \mathrm{R}_{1.4}$
objects are oriented and then translated
- implementation
- choose the GL_MODELVIEW stack
- initialize with I_{4}
- rotate with $\mathrm{R}_{\mathrm{v}}{ }^{-1}$
I_{4}
- translate with $\mathrm{T}_{\mathrm{v}}{ }^{-1}$
$\mathrm{R}_{\mathrm{v}}{ }^{-1} \cdot \mathrm{~T}_{\mathrm{v}}{ }^{-1}=\mathrm{V}^{-1}$
- push
- translate with T_{1}
- rotate with R_{1}
- render object M_{1}
- pop
- ...

[Akenine-Moeller et al.: Real-time Rendering]

Summary

- 2D projection
- 3D projection
- OpenGL projection matrix
- perspective projection
- parallel projection
- OpenGL transformation matrices

References

- Duncan Marsh: "Applied Geometry for Computer Graphics and CAD", Springer Verlag, Berlin, 2004.
- Song Ho Ahn: "OpenGL", http://www.songho.ca/ .

