Subtyping
Extrinsic (sub)types

- **Extrinsic view** (Curry-style): a type is a *property* of a term. Think:
 - There is some set of *values*

```ocaml
type value =
  | VInt of int
  | VBool of bool
```

- Each type corresponds to a subset of values

```ocaml
let typ_int = function
  | VInt _ -> true
  | _ -> false
let typ_bool = function
  | VBool _ -> true
  | _ -> false
```

- A term has type t if it evaluates to a value of type t
Extrinsic (sub)types

- **Extrinsic view** (Curry-style): a type is a *property* of a term. Think:
 - There is some set of *values*

    ```
    type value =
        | VInt of int
        | VBool of bool
    ```

 - Each type corresponds to a subset of values

    ```
    let typ_int = function
        | VInt _ -> true
        | _ -> false
    let typ_bool = function
        | VBool _ -> true
        | _ -> false
    ```

 - A term has type t if it evaluates to a value of type t

- *Types may overlap.*

```
let typ_nat = function
    | VInt x -> x >= 0
    | _ -> false
```
Subtyping

• Call \(s \) a **subtype** of type \(t \) if the values of type \(s \) is a subset of values of type \(t \)
• A subtyping judgement takes the form \(\vdash s <: t \)
 • “The type \(s \) is a subtype of \(t \)”
 • Liskov substitution principle: if \(s \) is a subtype of \(t \), then terms of type \(t \) can be replaced with terms of type \(s \) without breaking type safety.
Call s a **subtype** of type t if the values of type s is a subset of values of type t

A subtyping judgement takes the form $\vdash s <: t$

- “The type s is a subtype of t”
- Liskov substitution principle: if s is a subtype of t, then terms of type t can be replaced with terms of type s without breaking type safety.

Subsumption

<table>
<thead>
<tr>
<th>NATINT</th>
<th>SUBSUMPTION</th>
<th>TRANSITIVITY</th>
<th>REFLEXIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma \vdash e : s$</td>
<td>$\vdash s <: t$</td>
<td>$\vdash t_1 <: t_2$</td>
<td>$\vdash t_2 <: t_3$</td>
</tr>
<tr>
<td>$\vdash \text{nat} <: \text{int}$</td>
<td>$\Gamma \vdash e : t$</td>
<td>$\vdash t_1 <: t_3$</td>
<td></td>
</tr>
</tbody>
</table>

Subsumption: if s is a subtype of t, then terms of type s can be used as if they were terms of type t
Casting

- **Upcasting**: Suppose \(s <: t \) and \(e \) has type \(s \). May safety cast \(e \) to type \(t \).
 - Subsumption rule: upcast implicitly (C, Java, C++, ...)
 - Not necessarily a no-op
 - In OCaml: upcast \(e \) to \(t \) with \((e :> t) \) (important for type inference!)

- **Downcasting**: Suppose \(s <: t \) and \(e \) has type \(t \). May not safety cast \(e \) to type \(s \).
 - **Checked downcasting**: check that downcasts are safe at runtime (Java, `dynamic_cast` in C++)
 - Type safe – throwing an exception is not the same as a type error
 - **Unchecked downcasting**: `static_cast` in C++
 - **No downcasting**: OCaml
Extending the subtype relation

TUPLE

\[\frac{\vdash t_1 <: s_1 \quad \ldots \quad \vdash t_n <: s_n}{\vdash t_1 \times \ldots \times t_n <: s_1 \times \ldots \times s_n} \]

LIST

\[\frac{}{\vdash s <: t} \]

\[\frac{}{\vdash s \text{ list} <: t \text{ list}} \]

ARRAY

\[\frac{}{\vdash s <: t} \]

\[\frac{}{\vdash s \text{ array} <: t \text{ array}} \]
Extending the subtype relation

\[\text{TUPLE} \]
\[\frac{\Gamma \vdash t_1 <: s_1 \quad \ldots \quad \Gamma \vdash t_n <: s_n}{\Gamma \vdash t_1 \times \ldots \times t_n <: s_1 \times \ldots \times s_n} \]

\[\text{LIST} \]
\[\frac{\Gamma \vdash s <: t}{\Gamma \vdash s \text{ list} <: t \text{ list}} \]

\[\text{ARRAY} \]
\[\frac{\Gamma \vdash s <: t}{\Gamma \vdash s \text{ array} <: t \text{ array}} \]

- Array subtyping rule is **unsound** (Java!)

Let \(\Gamma = [x \mapsto \text{nat array}] \)

\[\text{VAR} \]
\[\frac{\Gamma \vdash x : \text{nat array}}{\Gamma \vdash x : \text{int array}} \]

\[\text{ARRAY} \]
\[\frac{\Gamma \vdash \text{nat array} <: \text{int array}}{\Gamma \vdash x : \text{int array}} \]

\[\text{ASSN} \]
\[\frac{\Gamma \vdash x[0] := -1}{\Gamma \vdash x[0] := -1} \]
Width subtyping

```plaintext

**Width subtyping**

```plaintext
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }

- point2d <: point3d or point3d <: point2d?
```
Width subtyping

```plaintext
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
```

- `point2d <: point3d` or `point3d <: point2d`?
  - Liskov: Every 3-dimensional point can be used as a 2-dimensional point (`point3d <: point2d`)
Width subtyping

```plaintext

- `type point2d { x : int, y : int }`
- `type point3d { x : int, y : int, z : int }

- `point2d <: point3d or point3d <: point2d`?
 - Liskov: Every 3-dimensional point can be used as a 2-dimensional point (`point3d <: point2d`)

 \[
 \text{RECORDWIDTH}
 \]

 \[
 \vdash \{ \text{lab}_1 : s_1; \ldots; \text{lab}_m : s_m \} <: \{ \text{lab}_1 : s_1; \ldots; \text{lab}_n : s_n \} \quad n < m
 \]
Compiling width subtyping

Easy!

- $s <: t$ means $\text{sizeof}(t) \leq \text{sizeof}(s)$, but field positions are the same (e.g., compiled the same way, whether e has type s or type t)

- e.g., $\text{pt->y} = *(\text{pt} + \text{sizeof(int)})$, regardless of whether pt is 2d or 3d
Depth subtyping

- \texttt{type nat_point} { \texttt{x : nat, y : nat} }
- \texttt{type int_point} { \texttt{x : int, y : int} }

- \texttt{nat_point <: int_point or int_point <: nat_point?}
Depth subtyping

```
type nat_point { x : nat, y : nat }
type int_point { x : int, y : int }
```

- `nat_point <: int_point` or `int_point <: nat_point`?
 - Liskov: `nat_point <: int_point` *but only for immutable records*!
Depth subtyping

\begin{align*}
\text{type} & \ \text{nat_point} \{ x : \text{nat}, \ y : \text{nat} \} \\
\text{type} & \ \text{int_point} \{ x : \text{int}, \ y : \text{int} \}
\end{align*}

- \text{nat_point} <: \text{int_point} \text{ or int_point} <: \text{nat_point}?
- \text{Liskov}: \text{nat_point} <: \text{int_point} \text{ but only for immutable records!}

\text{RECORDDEPTH}
\begin{align*}
\vdash s_1 <: t_1 & \quad \ldots \quad \vdash s_n <: t_n \\
\vdash \{ \text{lab}_1 : s_n; \ldots; \text{lab}_m : s_n \} <: \{ \text{lab}_1 : t_1; \ldots; \text{lab}_n : t_n \}
\end{align*}
Compiling depth subtyping

Easy!

- $s <: t$ means $\text{sizeof}(s) = \text{sizeof}(t)$, so field positions are the same.

- **pt is a nat_point**: $\text{pt->y} \text{ is } *(\text{pt } + \text{sizeof(nat)})$

- **pt is an int_point**: $\text{pt->y } \text{is } *(\text{pt } + \text{sizeof(int)})$

- $\text{sizeof(int)} = \text{sizeof(nat)}$
Compiling width+depth subtyping

- **Width + depth**: \(\text{pyramid} <: \text{rectangle} \) (with immutable records)

```
type point2d { x : int, y : int }
type point3d { x : int, y : int, z : int }
type rectangle = { tl : point2d, br : point2d }
type pyramid = { tl : point3d, br : point3d, top : point3d }
```
Compiling width+depth subtyping

```plaintext
type point2d { x : int , y : int }
type point3d { x : int , y : int , z : int }
type rectangle = { tl : point2d , br : point2d }
type pyramid = { tl : point3d , br : point3d , top : point3d }
```

- **Width + depth:** \(\text{pyramid} <: \text{rectangle} \) (with immutable records)

- Add an indirection layer!
Function subtyping

\[
\text{FUN} \\
\vdash s_1 <: t_1 \quad \vdash t_2 <: s_2 \\
\vdash t_1 \rightarrow t_2 <: s_1 \rightarrow s_2
\]

- In the function subtyping rule, we say that the argument type is *contravariant*, and the output type is *covariant*.
- Some languages (Eiffel, Dart) have *covariant* argument subtyping. Not type-safe!
Type inference with subtyping
In the presence of the subsumption rule, a term may have more than one type. Which type should we infer?

- Subtyping forms a preorder relation (Reflexivity and Transitivity)
- Typically (but not necessarily), subtyping is a partial order
 - A partial order is a binary relation that is reflexive, transitive, and antisymmetric
 If $a <: b$ and $b <: a$, then $a = b$
 - A preorder that is not a partial order: graph reachability ($u \leq v$ iff there is a path from u to v)
In the presence of the subsumption rule, a term may have more than one type. Which type should we infer?

- Subtyping forms a preorder relation (Reflexivity and Transitivity)
- Typically (but not necessarily), subtyping is a partial order
 - A partial order is a binary relation that is reflexive, transitive, and antisymmetric
 - If $a <: b$ and $b <: a$, then $a = b$
 - A preorder that is not a partial order: graph reachability ($u \leq v$ iff there is a path from u to v)

Given a context Γ and expression e, goal is to infer least type t such that $\Gamma \vdash e : t$ is derivable.
• Subsumption is not syntax-directed
 • Type inference can’t use program syntax to determine when to use subsumption rule
Subsumption is not syntax-directed
 Type inference can’t use program syntax to determine when to use subsumption rule
Do not use subsumption! Integrate subsumption into other inference rules. E.g.,

\[
\text{TYP_CARR} \\
\begin{array}{c}
\Gamma \vdash e_1 : t \\
\vdots \\
\Gamma \vdash e_n : t \\
\hline
\Gamma \vdash \text{new } t[]\{e_1, \ldots, e_n\} : t[]
\end{array}
\]
• Subsumption is not syntax-directed
 • Type inference can’t use program syntax to determine when to use subsumption rule
• Do not use subsumption! Integrate subsumption into other inference rules. E.g.,

\[
\text{TYP_CARR} \\
\begin{array}{ccc}
\Gamma \vdash e_1 : t_1 & \ldots & \Gamma \vdash e_n : t_n & \vdash t_1 <: t & \ldots & \vdash t_n <: t \\
\hline
\Gamma \vdash \text{new } t[]\{e_1, \ldots, e_n\} : t[]
\end{array}
\]
\[
\begin{align*}
\text{IF} & \quad \Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t \quad \Gamma \vdash e_3 : t \\
\quad & \quad \Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\end{align*}
\]
\[
\text{if } \Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t \\
\hline \\
\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\]
If
\[\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t \]
\[\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t \]

Problem: what is \(t \)?
If
\[\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t \]
\[\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t \]

- Problem: what is \(t \)?
- Say that \(t \) is a **least upper bound** of \(t_2 \) and \(t_3 \) if
 1. \(t_2 <: t \) and \(t_3 <: t \)
 2. For any type \(t' \) such that \(t_2 <: t' \) and \(t_3 <: t' \), we have \(t <: t' \)

(If \(<: \) is a partial order, least upper bound is unique)
\[
\begin{align*}
\text{If} & \quad \Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t \\
\hline
\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\end{align*}
\]

- Problem: what is \(t \)?
- Say that \(t \) is a **least upper bound** of \(t_2 \) and \(t_3 \) if
 1. \(t_2 <: t \) and \(t_3 <: t \)
 2. For any type \(t' \) such that \(t_2 <: t' \) and \(t_3 <: t' \), we have \(t <: t' \)

 (If \(<: \) is a partial order, least upper bound is unique)
- Take \(t \) to be the least upper bound of \(t_2 \) and \(t_3 \)

Java: every pair of types has a least upper bound
- Least upper bound is the least common ancestor in class hierarchy

C++: with multiple inheritance, classes can have multiple upper bounds, none of which is least

OCaml: no subsumption rule. Must explicitly upcast each side of the branch.
\[
\begin{align*}
\text{If} & \quad \Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \\
& \quad \VDash t_2 <: t \quad \VDash t_3 <: t \\
\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\end{align*}
\]

- **Problem**: what is \(t \)?
- **Say that** \(t \) is a **least upper bound** of \(t_2 \) and \(t_3 \) if
 1. \(t_2 <: t \) and \(t_3 <: t \)
 2. For any type \(t' \) such that \(t_2 <: t' \) and \(t_3 <: t' \), we have \(t <: t' \)

 (If \(<: \) is a partial order, least upper bound is unique)
- **Take** \(t \) to be the least upper bound of \(t_2 \) and \(t_3 \)
 - **Java**: every pair of types has a least upper bound
 - Least upper bound is the least common ancestor in class hierarchy
 - **C++**: with multiple inheritance, classes can have multiple upper bounds, none of which is least
 - **Require** \(t_2 <: t_3 \) or \(t_3 <: t_2 \)
 - **OCaml**: no subsumption rule. Must explicitly upcast each side of the branch.
If
\[\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t \]
\[\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t \]

- Problem: what is \(t \)?
- Say that \(t \) is a *least upper bound* of \(t_2 \) and \(t_3 \) if
 1. \(t_2 <: t \) and \(t_3 <: t \)
 2. For any type \(t' \) such that \(t_2 <: t' \) and \(t_3 <: t' \), we have \(t <: t' \)

(If \(<: \) is a partial order, least upper bound is unique)
- Take \(t \) to be the least upper bound of \(t_2 \) and \(t_3 \)
 - Java: every pair of types has a least upper bound
 - Least upper bound is the least common ancestor in class hierarchy
 - C++: with multiple inheritance, classes can have multiple upper bounds, none if which is *least*
 - Require \(t_2 <: t_3 \) or \(t_3 <: t_2 \)
\[
\text{If } \Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t_2 \quad \Gamma \vdash e_3 : t_3 \quad \vdash t_2 <: t \quad \vdash t_3 <: t
\]
\[
\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\]

- **Problem:** what is \(t \)?
- **Say that** \(t \) is a *least upper bound* of \(t_2 \) and \(t_3 \) if
 1. \(t_2 <: t \) and \(t_3 <: t \)
 2. For any type \(t' \) such that \(t_2 <: t' \) and \(t_3 <: t' \), we have \(t <: t' \)

 (If \(<: \) is a partial order, least upper bound is unique)

- **Take** \(t \) to be the least upper bound of \(t_2 \) and \(t_3 \)
 - **Java:** every pair of types has a least upper bound
 - Least upper bound is the least common ancestor in class hierarchy
 - **C++:** with multiple inheritance, classes can have multiple upper bounds, none if which is *least*
 - Require \(t_2 <: t_3 \) or \(t_3 <: t_2 \)
 - **OCaml:** no subsumption rule. Must explicitly upcast each side of the branch.