COS320: Compiling Techniques

Zak Kincaid

March 24,2020

Logistics

* Midterm due Friday
e HW3 due next week (Tuesday)

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

Semantic Analysis

Semantic analysis

® The semantic analysis phase is responsible for:
¢ Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)

Semantic analysis

® The semantic analysis phase is responsible for:
¢ Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)
¢ Semantic analysis phase can report warnings (potential problems) or errors (severe
problems that must be resolved in order to compile)
® ex.c:4:5: warning: assignment makes integer from pointer without a cast
® ex.c:3:11: error: ‘i’ undeclared (first use in this function)

Semantic analysis

® The semantic analysis phase is responsible for:
¢ Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)
¢ Semantic analysis phase can report warnings (potential problems) or errors (severe
problems that must be resolved in order to compile)
® ex.c:4:5: warning: assignment makes integer from pointer without a cast
® ex.c:3:11: error: ‘i’ undeclared (first use in this function)
¢ Semantic analysis may not be a separate phase - e.g., may be incorporated into IR
translation

Semantic analysis

The semantic analysis phase is responsible for:
¢ Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
® Checking that the AST is well-typed
® Various other well-formedness checks not captured by the grammar (e.g., break must appear
inside a for, while, or switch)
Semantic analysis phase can report warnings (potential problems) or errors (severe
problems that must be resolved in order to compile)
® ex.c:4:5: warning: assignment makes integer from pointer without a cast
® ex.c:3:11: error: ‘i’ undeclared (first use in this function)
Semantic analysis may not be a separate phase - e.g., may be incorporated into IR
translation
Main data structure manipulated by semantic analysis: symbol table
® Mapping from symbols to information about those symbols (type, location in source text, ...)
® Symbol table is used to help translation into IR
® Semantic analysis may also decorate AST (e.g., attach type information to expressions, or
replace symbols with references to their symbol table entry)

Types

* Type checking catches errors at compile time, eliminating a class of mistakes that would
otherwise lead to run-time errors
* Type information is sometimes necessary for code generation
® Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
® pointer/integer compiled differently depending on pointer type
® Assignment x = y compiled differently if y is an int ora struct

What is a type?

e Intrinsic view (Church-style): a type is syntactically part of a term.

® Aterm that cannot be typed is not a term at all

® Types do not have inherent meaning - they are just used to define the syntax of a program
e Extrinsic view (Curry-style): a type is a property of a term.

® For any term and every type, either the term has that type or not

® A term may have multiple types

® Aterm may have no types

What is a type system?

* A type system consists of a system of judgements and inference rules
¢ (Extrinsic view) A judgement is a claim, which may or may not be valid
® | 3:int-"3 hastype integer”
® I (1+42):bool - “(1+2) has type boolean”
® Inference rules are used to derive valid judgements from other valid judgements.

ADD
Fep:int Feg:int

F e+ e :int

Read: “If ¢; and ey have type int, so does e; + e

What is a type system?

* A type system consists of a system of judgements and inference rules
¢ (Extrinsic view) A judgement is a claim, which may or may not be valid
® | 3:int-"3 hastype integer”
® I (1+42):bool - “(1+2) has type boolean”
® Inference rules are used to derive valid judgements from other valid judgements.

ADD
Fep:int Feg:int

F e+ e :int

Read: “If ¢; and ey have type int, so does e; + e
¢ Type system might involve many different kinds of judgement

* Well-typed expressions
Well-formed types
Well-formed statements

Inference rules, generally

* An inference rule consists of a list of premises .Ji, ..., J,, and one conclusion J (and
optionally a side-condition), typically written as:

Ji Jo o Jo,
SIDE-CONDITION

¢ Side-condition: additional premise, but not a judgement

® Read top-down: If J; and J> and ... and J,, are valid, and the side condition holds, then Jis
valid.

® Read bottom-up: To prove Jis valid, sufficient to prove Ji, Js, ... J,, are valid

A simple expression language

* Syntax of expressions

<Exp> ::=<Var> | <Int>
| <Exp>+<Exp> | <Exp>*<Exp>
| <Exp>A<Exp> | <Exp>V<Exp>
| <Exp><<Exp> | <Exp>=<Exp>
| if <Exp> then <Exp> else <Exp>

® 3 + (2 A) issyntactically well-formed, but not well-typed
® Isx + 1 well-typed?

Type judgements

e A type environment is a symbol table mapping symbols to types.

® Eg,[x+— int,y — bool,z — int]: xand z are ints, y is a bool
® Notation: type environment denoted by I"
® Notation: I'{z +— t} is a functional update

t ifz=1y
I'(y) otherwise

o () = {

Type judgements

e A type environment is a symbol table mapping symbols to types.

® Eg,[x+— int,y — bool,z — int]: xand z are ints, y is a bool
® Notation: type environment denoted by I"
® Notation: I'{z +— t} is a functional update

t ifz=1y
I'(y) otherwise

o () = {

® Atype judgement takes the form ' e: ¢
® Read “Under the type environment I, the expression ¢ has type ¢’

Inference rules

INT VAR
ADD
- pef{.,-1,01,.. T(z) =t T'hke :int Ik e :int
Fl—n:intn {) 'zt (@) ! - 2
I'Fe 4+ e:int
AND LEQ
' e; : bool ' ey : bool I'Fe :int I'Fes:int
I'F eg A ey bool 'k e < ey :bool

IF
Fl—el:bool Fl—eQ:t F|—€3:t

I'Hife;theneyelsees: t

Derivations

e A derivation or proof tree is a tree where each node is labelled by a judgement, and edges
connect premises to a conclusion according to some inference rule.

* Leaves of the tree are axioms (inference rules w/o premises)
Derivationof z: int - 2 4 2 < 10 : bool:

INT

- — VAR — -
r:inthk 2:int z:intk z:int
ADD - - INT 5 5
z:intF 24+ 2:int z:intkF 10: int

z:intF 2+ 2<10: bool

LEQ

Derivationfor z: int Fif z < 0thenzelse —1xz: int:

VAR INT INT VAR
z:int bk z:int z:int - —1:int z:intF —1:int z:int bk z:int
LEa VAR MuL

| z:int 2 < 0 : bool z:int bk z:int z:intkF —1xz:int
F

z:int Fifz < Othenzelse — 1 z: int

Type checking

* Goal of a type checker: given a context I, expression e, and type ¢, determine whether a
derivation of the judgement I |- e : ¢ exists.

® Method: recurse on the structure of the AST, applying inference rules “bottom-up”

Binders & functions: scope logic

LET FUN
I'kFe:tg F{Z"—)tl}l_eglt F{x'—>t1}|—elt2
IF'Fletz=¢c1iney:t FHfun(z: t)->e: t; — b
ApPP

F|—61:t1—>t2 F"Gg:tl
I'Fee:ty

Type inference

* Goal of type inference: given a context I" and expression ¢, determine a type ¢ for which
there is a derivation of the judgementI' - ¢: .

* Method: (again) recurse on the structure of the AST, applying inference rules “bottom-up

 This only works because we have a very simple type system

® OCaml type inference: recurse on the structure of the AST to produce a constraint system,
then solve the constraints

Type soundness

® Robin Milner: “Well typed programs do not go wrong”
® More formally: if - e : ¢is derivable, then evaluating e either fails to terminate or yields a
value of type ¢

® Note: for our language (extension of simply-typed lambda calculus with integers and
booleans), we have something stronger: evaluating ¢ always yields a value of type ¢

Well-formed types

* In languages with type definitions, need additional rules to define well-formed types
¢ Judgements take the form H+ ¢

® His set of type names
® tisatype
® HI t-"Assuming H names well-formed types, tis a well-formed type”

Well-formed types

¢ In languages with type definitions, need additional rules to define well-formed types
¢ Judgements take the form H+ ¢
® His set of type names

® tisatype
® HI t-"Assuming H names well-formed types, tis a well-formed type”
NAMED
INT BooL ARROW
HE t HE to se H
HE s

HbE int H bool HEH — 6

Well-formed types

¢ In languages with type definitions, need additional rules to define well-formed types
¢ Judgements take the form H+ ¢
® His set of type names

® tisatype
® HI t-"Assuming H names well-formed types, tis a well-formed type”
NAMED
INT BooL ARROW
HE t HE to se H
HE s
HbE int H bool HEH — 6

* Note: also need to modify the typing rules & judgements. E.g.,

FUN
HE 4 H,F{Z‘Htl}}—eilb

HTFfun (z:t)->e: t1 = t

Statements

¢ In languages with statements, need additional rules to defined well-formed statements
¢ E.g, judgements may take the form D;T'; rt - s
® D maps type names to their definitions
® T'is a type environment (variables — types)
® rtisatype
® D.T;rtF s-“with type definitions D, assuming type environment I, sis a valid statement
within the context of a function that returns a value of type rt’

Statements

¢ In languages with statements, need additional rules to defined well-formed statements
¢ E.g, judgements may take the form D;T'; rt - s

D maps type names to their definitions

T is a type environment (variables — types)

rtis a type

D;T; rtt s - “with type definitions D, assuming type environment T', sis a valid statement
within the context of a function that returns a value of type rt’

ASSIGN RETURN DECL
I'ke:T(2) F'ke:rt F'ke:t DI{zw t};rthk s

D;Tsrtkz:=e D;T;rttreturn e D;T;rt-varz = e; 59

Additional aspects

¢ In OCaml, can have a variable and a type with the same name
® Multiple namespaces = multiple environments / symbol tables
® Parametric polymorphism
® Eg, fun x -> xinocamlhastype’a -> ’a
* Finite representation of infinitely many typings
* Subtyping (e.g., object-oriented languages) - next time
® Related: casting, coersion

