COS320: Compiling Techniques

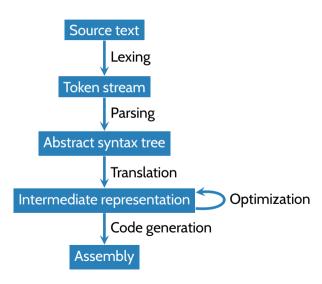
Zak Kincaid

March 24, 2020

Logistics

- Midterm due Friday
- HW3 due next week (Tuesday)

Compiler phases (simplified)



- The *semantic analysis phase* is responsible for:
 - Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
 - Checking that the AST is well-typed
 - Various other well-formedness checks not captured by the grammar (e.g., break must appear inside a for, while, or switch)

- The *semantic analysis phase* is responsible for:
 - Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
 - Checking that the AST is well-typed
 - Various other well-formedness checks not captured by the grammar (e.g., break must appear inside a for, while, or switch)
- Semantic analysis phase can report *warnings* (potential problems) or *errors* (severe problems that must be resolved in order to compile)
 - ex.c:4:5: warning: assignment makes integer from pointer without a cast
 - ex.c:3:11: error: 'i' undeclared (first use in this function)

- The *semantic analysis phase* is responsible for:
 - Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
 - Checking that the AST is well-typed
 - Various other well-formedness checks not captured by the grammar (e.g., break must appear inside a for, while, or switch)
- Semantic analysis phase can report *warnings* (potential problems) or *errors* (severe problems that must be resolved in order to compile)
 - ex.c:4:5: warning: assignment makes integer from pointer without a cast
 - ex.c:3:11: error: 'i' undeclared (first use in this function)
- Semantic analysis may not be a separate phase e.g., may be incorporated into IR translation

- The *semantic analysis phase* is responsible for:
 - Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
 - Checking that the AST is well-typed
 - Various other well-formedness checks not captured by the grammar (e.g., break must appear inside a for, while, or switch)
- Semantic analysis phase can report *warnings* (potential problems) or *errors* (severe problems that must be resolved in order to compile)
 - ex.c:4:5: warning: assignment makes integer from pointer without a cast
 - ex.c:3:11: error: 'i' undeclared (first use in this function)
- Semantic analysis may not be a separate phase e.g., may be incorporated into IR translation
- Main data structure manipulated by semantic analysis: symbol table
 - Mapping from symbols to information about those symbols (type, location in source text, ...)
 - Symbol table is used to help translation into IR
 - Semantic analysis may also decorate AST (e.g., attach type information to expressions, or replace symbols with references to their symbol table entry)

Types

- Type checking catches errors at compile time, eliminating a class of mistakes that would otherwise lead to run-time errors
- Type information is sometimes necessary for code generation
 - Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
 - pointer/integer compiled differently depending on pointer type
 - Assignment x = y compiled differently if y is an int or a struct

What is a type?

- Intrinsic view (Church-style): a type is syntactically part of a term.
 - A term that cannot be typed is not a term at all
 - Types do not have inherent meaning they are just used to define the syntax of a program
- Extrinsic view (Curry-style): a type is a property of a term.
 - For any term and every type, either the term has that type or not
 - A term may have multiple types
 - A term may have no types

What is a type system?

- A type system consists of a system of judgements and inference rules
 - (Extrinsic view) A judgement is a claim, which may or may not be valid
 - \vdash 3 : int "3 has type integer"
 - $\vdash (1+2) : bool "(1+2) has type boolean"$
 - Inference rules are used to derive valid judgements from other valid judgements.

$\frac{\mathsf{ADD}}{\vdash e_1 : \mathsf{int}} \vdash e_2 : \mathsf{int}}{\vdash e_1 + e_2 : \mathsf{int}}$

Read: "If e_1 and e_2 have type int, so does $e_1 + e_2$ "

What is a type system?

- A type system consists of a system of judgements and inference rules
 - (Extrinsic view) A judgement is a claim, which may or may not be valid
 - $\vdash 3$: int "3 has type integer"
 - \vdash (1 + 2) : bool "(1+2) has type boolean"
 - Inference rules are used to derive valid judgements from other valid judgements.

$$\frac{\mathsf{ADD}}{\vdash e_1 : \mathsf{int}} \vdash e_2 : \mathsf{int}}{\vdash e_1 + e_2 : \mathsf{int}}$$

Read: "If e_1 and e_2 have type int, so does $e_1 + e_2$ "

- Type system might involve many different kinds of judgement
 - Well-typed expressions
 - Well-formed types
 - Well-formed statements
 - ..

Inference rules, generally

• An inference rule consists of a list of premises $J_1, ..., J_n$ and one conclusion J (and optionally a side-condition), typically written as:

$$\frac{J_1 \qquad J_2 \qquad \cdots \qquad J_n}{J}$$
 Side-condition

- Side-condition: additional premise, but not a judgement
- Read top-down: If J_1 and J_2 and ... and J_n are valid, and the side condition holds, then J is valid.
- Read *bottom-up*: To prove J is valid, sufficient to prove J_1 , J_2 , ... J_n are valid

A simple expression language

Syntax of expressions

- ullet 3 + (2 \wedge 0) is syntactically well-formed, but not well-typed
- Is x + 1 well-typed?

Type judgements

- A *type environment* is a symbol table mapping symbols to types.
 - E.g., $[x \mapsto int, y \mapsto bool, z \mapsto int]$: x and z are ints, y is a bool
 - Notation: type environment denoted by Γ
 - Notation: $\Gamma\{x \mapsto t\}$ is a functional update

$$\Gamma\{x\mapsto t\}(y)= egin{cases} t & \text{if } x=y \\ \Gamma(y) & \text{otherwise} \end{cases}$$

Type judgements

- A type environment is a symbol table mapping symbols to types.
 - E.g., $[x \mapsto int, y \mapsto bool, z \mapsto int]$: x and z are ints, y is a bool
 - Notation: type environment denoted by Γ
 - Notation: $\Gamma\{x \mapsto t\}$ is a functional update

$$\Gamma\{x\mapsto t\}(y)=\begin{cases} t & \text{if } x=y\\ \Gamma(y) & \text{otherwise} \end{cases}$$

- A type judgement takes the form $\Gamma \vdash e : t$
 - Read "Under the type environment Γ , the expression e has type t"

Inference rules

$$\frac{\mathsf{INT}}{\Gamma \vdash n : \mathsf{int}} \ n \in \{..., -1, 0, 1, ...\} \qquad \frac{\mathsf{VAR}}{\Gamma \vdash x : t} \ \Gamma(x) = t \qquad \frac{\mathsf{ADD}}{\Gamma \vdash e_1 : \mathsf{int}} \ \frac{\Gamma \vdash e_2 : \mathsf{int}}{\Gamma \vdash e_1 + e_2 : \mathsf{int}}$$

 $\Gamma \vdash e_1 : \mathsf{bool} \qquad \Gamma \vdash e_2 : \mathsf{bool}$

 $\Gamma \vdash e_1 \land e_2 : \mathsf{bool}$

 $\Gamma \vdash e_1 : \mathsf{int} \qquad \Gamma \vdash e_2 : \mathsf{int}$

 $\Gamma \vdash e_1 < e_2 : \mathsf{bool}$

$$\frac{\Gamma}{\Gamma \vdash e_1 : \mathsf{bool}} \frac{\Gamma \vdash e_2 : t}{\Gamma \vdash e_3 : t} \frac{\Gamma \vdash e_3 : t}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 : t}$$

Derivations

- A derivation or proof tree is a tree where each node is labelled by a judgement, and edges connect premises to a conclusion according to some inference rule.
- Leaves of the tree are axioms (inference rules w/o premises)

Derivation of x: int $\vdash 2 + x \le 10$: bool:

$$\mathsf{LEQ} \frac{\mathsf{ADD}}{\frac{\mathsf{X} \colon \mathsf{int} \vdash 2 \colon \mathsf{int}}{x \colon \mathsf{int} \vdash 2 \colon \mathsf{int}}} \frac{\mathsf{VAR}}{x \colon \mathsf{int} \vdash x \colon \mathsf{int}} \frac{\mathsf{INT}}{x \colon \mathsf{int} \vdash 10 \colon \mathsf{int}} \frac{\mathsf{INT}}{x \colon \mathsf{int} \vdash 10 \colon \mathsf{int}}$$

Derivation for x: int \vdash if $x \le 0$ then x else -1 * x: int:

Type checking

- Goal of a type checker: given a context Γ, expression e, and type t, determine whether a
 derivation of the judgement Γ ⊢ e: t exists.
- Method: recurse on the structure of the AST, applying inference rules "bottom-up"

Binders & functions: scope logic

$$\begin{array}{ccccc} \operatorname{LET} & & & \operatorname{FUN} \\ \Gamma \vdash e_1 : t_1 & & \Gamma\{x \mapsto t_1\} \vdash e_2 : t \\ \hline \Gamma \vdash \operatorname{let} x = e_1 \text{ in } e_2 : t & & \Gamma\{x \mapsto t_1\} \vdash e : t_2 \\ \hline \Gamma \vdash \operatorname{fun} (x : t_1) -> e : t_1 \to t_2 \\ \hline \hline \Gamma \vdash e_1 : t_1 \to t_2 & & \Gamma \vdash e_2 : t_1 \\ \hline \Gamma \vdash e_1 e_2 : t_2 & & \end{array}$$

Type inference

- Goal of type inference: given a context Γ and expression e, determine a type t for which there is a derivation of the judgement $\Gamma \vdash e : t$.
- Method: (again) recurse on the structure of the AST, applying inference rules "bottom-up"
- This only works because we have a very simple type system
 - OCaml type inference: recurse on the structure of the AST to produce a *constraint system*, then solve the constraints

Type soundness

- Robin Milner: "Well typed programs do not go wrong"
- More formally: if $\vdash e$: t is derivable, then evaluating e either fails to terminate or yields a value of type t
 - ullet Note: for our language (extension of simply-typed lambda calculus with integers and booleans), we have something stronger: evaluating e always yields a value of type t

Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - *H* is set of type names
 - *t* is a type
 - $H \vdash t$ "Assuming H names well-formed types, t is a well-formed type"

Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - *H* is set of type names
 - t is a type
 - $H \vdash t$ "Assuming H names well-formed types, t is a well-formed type"

INT	BOOL	Arrow	NAMED
		$H \vdash t_1 \qquad H \vdash t_2$	${H \vdash s} \ s \in H$
$\overline{H dash ext{int}}$	$\overline{H \vdash bool}$	$H \vdash t_1 \rightarrow t_2$	$H \vdash S$

NIAMED

Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - *H* is set of type names
 - t is a type
 - $H \vdash t$ "Assuming H names well-formed types, t is a well-formed type"

INT	BOOL	Arrow	NAMED
		$H \vdash t_1 \qquad H \vdash t_2$	${H \vdash s} \ s \in H$
H dash int	$\overline{H \vdash bool}$	$H \vdash t_1 \rightarrow t_2$	$H \vdash S$

Note: also need to modify the typing rules & judgements. E.g.,

$$\label{eq:fundamental_fundamental} \frac{H \vdash t_1 \qquad H, \Gamma\{x \mapsto t_1\} \vdash e: t_2}{H, \Gamma \vdash \mathbf{fun}\; (x:t_1) {->} e: t_1 \to t_2}$$

Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g., judgements may take the form $D; \Gamma; rt \vdash s$
 - *D* maps type names to their definitions
 - Γ is a type environment (variables \rightarrow types)
 - rt is a type
 - D; Γ ; $rt \vdash s$ "with type definitions D, assuming type environment Γ , s is a valid statement within the context of a function that returns a value of type rt"

Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g., judgements may take the form $D; \Gamma; rt \vdash s$
 - D maps type names to their definitions
 - Γ is a type environment (variables \rightarrow types)
 - rt is a type
 - $D; \Gamma; rt \vdash s$ "with type definitions D, assuming type environment Γ, s is a valid statement within the context of a function that returns a value of type rt"

Assign	RETURN	DECL	
$\Gamma \vdash e : \Gamma(x)$	$\Gamma \vdash e : rt$	$\Gamma \vdash e : t$	$D; \Gamma\{x \mapsto t\}; rt \vdash s_2$
$\overline{D;\Gamma;rt\vdash x:=e}$	$\overline{D;\Gamma;rt} \vdash return\;\overline{e}$	$D;\Gamma;rt\vdash$ var $x=e;s_2$	

Additional aspects

- In OCaml, can have a variable and a type with the same name
 - Multiple namespaces ⇒ multiple environments / symbol tables
- Parametric polymorphism
 - E.g., fun x -> x in ocaml has type 'a -> 'a
 - Finite representation of infinitely many typings
- Subtyping (e.g., object-oriented languages) next time
 - Related: casting, coersion