COS320: Compiling Techniques

Zak Kincaid

April 16, 2020
Static Single Assignment form
SSA

- Each variable appears on the left-hand-side of at most one assignment in a CFG.

```plaintext
if (x < 0) {
    y := y - x;
} else {
    y := y + x;
}
return y
```

```plaintext
if (x_0 < 0) {
    y_1 := y_0 - x_0;
} else {
    y_2 := y_0 + x_0;
}
y_3 := \phi(y_1, y_2)
return y_3
```

- Recall: $y_3 := \phi(y_1, y_2)$ picks either y_1 or y_2 (whichever one corresponds to the branch that is actually taken) and stores it in y_3.

- Well-formedness condition: uids must be defined before they are used.
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables $x_1, x_2, x_3, ...$
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, ...
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are **chordal** (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - (*But* optimal translation out of SSA form is intractable)
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

```c
while some \%x has no uses do
    Remove definition of \%x from CFG;
    • SSA conversion ⇒ more assignments are eliminated
      x := 0
      x := 1
      return 2 * x
```

\(^1\) does not eliminate dead stores
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while } \text{some } \%x \text{ has no uses do}
\]
\[
\quad \text{Remove definition of } \%x \text{ from CFG;}
\]

- SSA conversion ⇒ more assignments are eliminated

```
x := 0
x := 1
return 2 * x
```

```
x_0 := 0
x_1 := 1
return 2 * x_1
```

\(^1\)does not eliminate dead stores
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

```plaintext
while some \( \%x \) has no uses do
  Remove definition of \( \%x \) from CFG;
  
  • SSA conversion ⇒ more assignments are eliminated
```

\[
\begin{align*}
 &x := 0 \\
 &x := 1 \\
 &\text{return } 2 \ast x
\end{align*}
\]

\[
\begin{align*}
 &x_0 := 0 \\
 &x_1 := 1 \\
 &\text{return } 2 \ast x_1
\end{align*}
\]

\(^1\) does not eliminate dead stores
Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \%x \text{ has no uses do}
\]

| Remove definition of \(\%x\) from CFG; \\
| SSA conversion \(\Rightarrow\) more assignments are eliminated \\
| \[
\begin{align*}
x & := 0 \\
x & := 1 \\
\text{return } 2 \times x \\
\end{align*}
\]

\[
\begin{align*}
x_1 & := 1 \\
\text{return } 2 \times x_1
\end{align*}
\]

\(^1\)does not eliminate dead stores
Recall: constant propagation

- The goal of constant propagation: determine at each instruction I a *constant environment*
 - A *constant environment* is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

- Say that the assignment IN, OUT is *conservative* if
 1. $IN[s]$ assigns each variable \top
 2. For each node $bb \in N$, $OUT[bb] \equiv post_{CP}(bb, IN[bb])$
 3. For each edge $src \to dst \in E$, $IN[dst] \equiv OUT[src]$
(Dense) constant propagation performance

- **Memory requirements**: $O(|N| \cdot |Var|)$
 - Constant environment has size $O(|Var|)$, need to track $O(1)$ per node
- **Time requirements**: $O(|N| \cdot |Var|)$
 - Processing a single node takes $O(1)$ time
 - Each node is processed $O(|Var|)$ times
 - **Height** of the abstract domain (length of longest strictly ascending sequence): $3|Var|$
- Can we do better?
Idea: SSA connects variable *definitions* directly to their *uses*

- Don’t need to store the value of *every* variable at *every* program point
- Don’t need to propagate changes through irrelevant blocks
Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
 • Don’t need to store the value of every variable at every program point
 • Don’t need to propagate changes through irrelevant blocks
• Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 • Define $\text{rhs}(\%x)$ to be the right hand side of the unique assignment to $\%x$
 • Define $\text{succ}(\%x) = \{ \%y : \text{rhs}(\%y) \text{ reads } \%x \}$
Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their *uses*
 - Don’t need to store the value of *every* variable at *every* program point
 - Don’t need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to *data flow* rather than *control flow*
 - Define $rhs(\%x)$ to be the right hand side of the unique assignment to $\%x$
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$
- Local specification for constant propagation:
 - scp is the smallest function $Uid \rightarrow \mathbb{Z} \cup \{\top, \bot\}$ such that
 - If G contains no assignments to $\%x$, then $scp(\%x) = \top$
 - For each instruction $\%x = e$, $scp(\%x) = eval(e, scp)$
Worklist algorithm

$$scp(\%x) = \begin{cases} \bot & \text{if } \%x \text{ has an assignment} \\ T & \text{otherwise} \end{cases}$$

work $\leftarrow \{\%x \in Uid : \%x \text{ is defined}\}$;
while work $\neq \emptyset$ do
 Pick some $\%x$ from work;
 work \leftarrow work \ $\{\%x\}$;
 if $rhs(\%x) = \phi(\%y, \%z)$ then
 $v \leftarrow scp(\%y) \sqcup scp(\%z)$
 else
 $v \leftarrow eval(rhs(\%x), scp)$
 if $v \neq scp(\%x)$ then
 $scp(\%x) \leftarrow v,$
 work \leftarrow work \cup succ($\%x$)
Computational complexity of constant propagation

<table>
<thead>
<tr>
<th></th>
<th>Dense</th>
<th>Sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>$O(</td>
<td>N</td>
</tr>
<tr>
<td>Time</td>
<td>$O(</td>
<td>N</td>
</tr>
</tbody>
</table>

- **However**, observe that we only find constants for uids, not stack slots.
- **Again**, advantageous to use uids to represent variable whenever possible
Computing SSA
(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each use of a variable y with y_i, where the ith definition of y is the unique reaching definition
(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each use of a variable y with y_i, where the ith definition of y is the unique reaching definition
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) statement

```plaintext
y := 0;
while (x >= 0) {
    x := x - 1;
    y := y + x;
}
return y
```

```plaintext
y_0 := 0;
while (true) {
    x_2 = \phi(x_0, x_1)
    y_2 = \phi(y_0, y_1)
    if (x_2 < 0) break;
    x_1 := x_2 - 1;
    y_1 := y_2 + x_1;
}
return y_2
```
Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each join point
 - A join point is a node in the CFG with more than one predecessor

\(^2\)The entry node of the CFG is considered to be an implicit definition of every variable
Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each join point
 - A join point is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 1. The start node of both P_1 and P_2 defines x\(^2\)
 2. The only node shared by P_1 and P_2 is n

\(^2\)The entry node of the CFG is considered to be an implicit definition of every variable
Placing ϕ statements

• Easy, inefficient solution: place a ϕ statement for each variable location at each join point
 • A join point is a node in the CFG with more than one predecessor
• Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 1. The start node of both P_1 and P_2 defines x
 2. The only node shared by P_1 and P_2 is n
• The path convergence criterion can be implemented using the concept of iterated dominance frontiers

\[\text{The entry node of the CFG is considered to be an implicit definition of every variable}\]
Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.
Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.
- Observe: dominance is a partial order on N
 - Every node dominates itself (reflexive)
 - If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 - If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)
If we draw an edge from every node to its immediate dominator, we get a data structure called the dominator tree.

- (Essentially the Haase diagram of the dominated-by order)
Dominance and SSA

• SSA well-formedness criteria
 • If $\%x$ is the ith argument of a ϕ function in a block n, then the definition of $\%x$ must dominate the ith predecessor of n.
 • If $\%x$ is used in a non-ϕ statement in block n, then the definition of $\%x$ must dominate n
Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it.
Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it.
- **Local specification**: dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \rightarrow n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$
- Can be solved using dataflow analysis techniques
- In practice: nearly linear time algorithm due to Lengauer & Tarjan.
Dominator analysis

• Let $G = (N, E, s)$ be a control flow graph.
• Define dom to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it
• **Local specification: dom is the largest (equiv. least in superset order) function such that**
 • $dom(s) = \{s\}$
 • For each $p \rightarrow n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$
• Can be solved using dataflow analysis techniques
 • In practice: nearly linear time algorithm due to Lengauer & Tarjan
• The **dominance frontier** of a node n is the set of all nodes m such that n dominates a **predecessor** of m, but does not strictly dominate m itself.

 $$DF(n) = \{ m : (\exists p \in \text{Pred}(m). n \in \text{dom}(p)) \land (m = n \lor n \notin \text{dom}(m)) \}$$

• Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ function for $\%x$.
\[DF(1) = \emptyset \]
\begin{itemize}
 \item $DF(1) = \emptyset$
 \item $DF(2) = \{2\}$
\end{itemize}
• $DF(1) = \emptyset$
• $DF(2) = \{2\}$
• $DF(3) = \{3, 6\}$
- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$
- $DF(4) = \{6\}$
- $DF(5) = \{3, 6\}$
- $DF(6) = \{2\}$
Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.

• But, that is not the only place where ϕ statements are needed.
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%_0 x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%_0 x$.
- *But*, that is not the only place where ϕ statements are needed.
Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid $%_0 x$, then any node m in the dominance frontier of n needs a ϕ statement for $%_0 x$.
• But, that is not the only place where ϕ statements are needed.

\[
egin{align*}
4: & \quad x_4 = \ldots \\
5: & \quad x_5 = \ldots \\
8: & \quad x_8 = \phi(x_4, x_5) \\
6: & \quad x_6 = \ldots \\
7: & \quad x_7 = \ldots \\
9: & \quad x_9 = \phi(x_6, x_7)
\end{align*}
\]

Not in dominance frontier of 4,5,6,7
SSA construction

- Extend dominance frontier to sets of nodes by letting \(DF(M) = \bigcup_{m \in M} DF(m) \)

- Define the iterated dominance frontier \(IDF(M) = \bigcup_{i} IDF_{i}(M) \), where

 - \(IDF_{0}(M) = DF(M) \)

 - \(IDF_{i+1}(M) = IDF_{i}(M) \cup IDF(IDF_{i}(M)) \)
SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the iterated dominance frontier $IDF(M) = \bigcup_i IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$
- For any node x, let $Def(x)$ be the set of nodes that define x
- Finally, we can characterize ϕ statement placement

Insert a ϕ statement for x at every node in $IDF(Def(x))$
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
The \(\phi \) statement is not executable, so it must be removed in order to generate code.

For each \(\phi \) statement \(\%x = \phi(\%x_1, \ldots, \$x_k) \) in block \(n \), \(n \) must have exactly \(k \) predecessors \(p_1, \ldots, p_k \).

Insert a new block along each edge \(p_i \rightarrow n \) which executes \(\%x = \%x_i \) (program no longer satisfies SSA property!)
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
- For each ϕ statement $%_0x = \phi(%_0x_1, \ldots, %_0x_k)$ in block n, n must have exactly k predecessors $p_1, \ldots p_k$.
- Insert a new block along each edge $p_i \rightarrow n$ which executes $%_0x = %_0x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions.