COS320: Compiling Techniques

Zak Kincaid

April 16, 2020

Static Single Assignment form

Each %uid appears on the left-hand-side of at most one assignment in a CFG

<pre>if (x < 0) { y := y - x; } else { y := y + x; } return y</pre>	\rightarrow	<pre>if (x₀ < 0) { y₁ := y₀ - x₀; } else { y₂ := y₀ + x₀; } y₃ := φ(y₁, y₂) return y₃</pre>
--	---------------	---

- Recall: y₃ := φ(y₁, y₂) picks either y₁ or y₂ (whichever one corresponds to the branch that is actually taken) and stores it in y₃
- Well-formedness condition: uids must be defined before they are used.

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many "subscripted" variables x₁, x₂, x₃,...
 - (At least) one for each definition of of x
 - Each x_i can potentially be stored in a different memory location

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many "subscripted" variables x1, x2, x3,...
 - (At least) one for each definition of of x
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are *chordal* (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - (But optimal translation out of SSA form is intractable)

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do Remove definition of %x from CFG;

• SSA conversion \Rightarrow more assignments are eliminated

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do Remove definition of %x from CFG;

• SSA conversion \Rightarrow more assignments are eliminated

$$\begin{cases} x := 0 & x_0 := 0 \\ x := 1 & x_1 := 1 \\ return 2 * x & return 2 * x_1 \end{cases}$$

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do Remove definition of %x from CFG;

• SSA conversion \Rightarrow more assignments are eliminated

$$\begin{cases} x := 0 & x_0 := 0 \\ x := 1 & x_1 := 1 \\ return 2 * x & return 2 * x_1 \end{cases}$$

Simple algorithm for eliminating assignment¹ instructions that are never used: while some %x has no uses do Remove definition of %x from CFG;

• SSA conversion \Rightarrow more assignments are eliminated

$$\begin{cases} x := 0 \\ x := 1 \\ return 2 * x \end{cases}$$
 SSA conversion
$$x_1 := 1 \\ return 2 * x_1$$

Recall: constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
 - A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \perp (indicating that x may take no values at run-time I is unreachable)
- Say that the assignment IN, OUT is conservative if
 - **1** IN[s] assigns each variable \top
 - 2 For each node $bb \in N$,

 $\mathsf{OUT}[bb] \sqsupseteq \textit{post}_{CP}(bb,\mathsf{IN}[bb])$

3 For each edge $src \rightarrow dst \in E$,

 $\mathsf{IN}[\mathit{dst}] \sqsupseteq \mathsf{OUT}[\mathit{src}]$

(Dense) constant propagation performance

- Memory requirements: $O(|N| \cdot |Var|)$
 - Constant environment has size O(|Var|), need to track O(1) per node
- Time requirements: $O(|N| \cdot |Var|)$
 - Processing a single node takes O(1) time
 - Each node is processed O(|Var|) times
 - Height of the abstract domain (length of longest strictly ascending sequence): 3|Var|
- Can we do better?

Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks

Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define rhs(%x) to be the right hand side of the unique assignment to %x
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$

Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to *data flow* rather than *control flow*
 - Define rhs(%x) to be the right hand side of the unique assignment to %x
 - Define $succ(\% x) = \{\% y : rhs(\% y) reads \% x\}$
- Local specification for constant propagation:
 - scp is the smallest function $\textit{Uid} \to \mathbb{Z} \cup \{\top, \bot\}$ such that
 - If G contains no assignments to %x, then $scp(\%x) = \top$
 - For each instruction %*x* = *e*, *scp*(%*x*) = *eval*(*e*, *scp*)

Worklist algorithm

```
scp(\%x) = \begin{cases} \bot & \text{if } \%x \text{ has an assignment} \\ \top & \text{otherwise} \end{cases}
work \leftarrow \{\%x \in Uid : \%x \text{ is defined}\};
 while work \neq \emptyset do
        Pick some \%x from work:
        work \leftarrow work \setminus \{\%x\} :
        if rhs(\%x) = \phi(\%y,\%z) then
               v \leftarrow \mathsf{scp}(\% y) \sqcup \mathsf{scp}(\% z)
        else
               v \leftarrow eval(rhs(\%x), scp)
        if v \neq scp(\%x) then
              scp(\%x) \leftarrow v;
               work \leftarrow work \cup succ(%x)
```

Computational complexity of constant propagation

	Dense	Sparse
Memory	$O(N \cdot Var)$	O(N) = O(Var)
Time	$O(N \cdot Var)$	O(N) = O(Var)

- However, observe that we only find constants for uids, not stack slots.
 - Again, advantageous to use uids to represent variable whenever possible

Computing SSA

(High-level) SSA conversion

- Replace each definition x = e with a $x_i = e$ for some unique subscript i
- Replace each *use* of a variable *y* with *y_i*, where the *i*th definition of *y* is the unique reaching definition

(High-level) SSA conversion

- Replace each definition x = e with a $x_i = e$ for some unique subscript i
- Replace each *use* of a variable *y* with *y_i*, where the *i*th definition of *y* is the unique reaching definition

 \rightarrow

- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) statement

$$y_0 := 0;$$

while (true) {
 $x_2 = \phi(x_0, x_1)$
 $y_2 = \phi(y_0, y_1)$
if ($x_2 < 0$) break;
 $x_1 := x_2 - 1;$
 $y_1 := y_2 + x_1;$
}
return y_2

- Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
 - A join point is a node in the CFG with more than one predecessor

²The entry node of the CFG is considered to be an implicit definition of every variable

${\rm Placing} \ \phi \ {\rm statements}$

- Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
 - A join point is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1 , P_2 ending at n such that
 - **1** The start node of both P_1 and P_2 defines x^2
 - **2** The only node shared by P_1 and P_2 is n

²The entry node of the CFG is considered to be an implicit definition of every variable

${\rm Placing} \ \phi \ {\rm statements}$

- Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
 - A join point is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1 , P_2 ending at n such that
 - **1** The start node of both P_1 and P_2 defines x^2
 - **2** The only node shared by P_1 and P_2 is n
- The path convergence criterion can be implemented using the concept of *iterated dominance frontiers*

²The entry node of the CFG is considered to be an implicit definition of every variable

Dominance

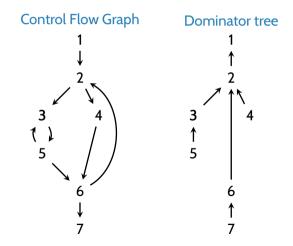
- Let G = (N, E, s) be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - *d* immediately dominates *n* if *d* strictly dominates *n* and but does not strictly dominate any strict dominator of *n*.

Dominance

- Let G = (N, E, s) be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - *d* immediately dominates *n* if *d* strictly dominates *n* and but does not strictly dominate any strict dominator of *n*.
- Observe: dominance is a partial order on N
 - Every node dominates itself (reflexive)
 - If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 - If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.

• (Essentially the Haase diagram of the dominated-by order)



Dominance and SSA

- SSA well-formedness criteria
 - If %x is the *i*th argument of a \$\phi\$ function in a block n, then the definition of %x must dominate the *i*th predecessor of n.
 - If % x is used in a non- ϕ statement in block n, then the definition of % x must dominate n

Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define *dom* to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it

Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define *dom* to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it
- Local specification: dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \to n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$

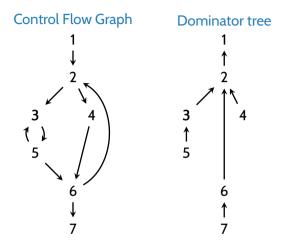
Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define *dom* to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it
- Local specification: dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \to n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$
- Can be solved using dataflow analysis techniques
 - In practice: nearly linear time algorithm due to Lengauer & Tarjan

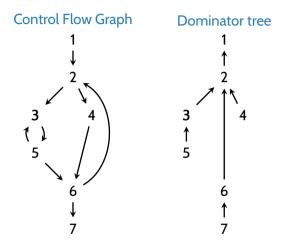
• The *dominance frontier* of a node *n* is the set of all nodes *m* such that *n* dominates a *predecessor* of *m*, but does not strictly dominate *m* itself.

• $DF(n) = \{m : (\exists p \in Pred(m).n \in dom(p)) \land (m = n \lor n \notin dom(m))\}$

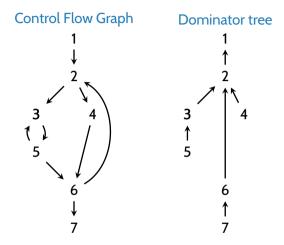
• Whenever a node *n* contains a definition of some uid %*x*, then any node *m* in the dominance frontier of *n* needs a ϕ function for %*x*.



• $DF(1) = \emptyset$



- $DF(1) = \emptyset$
- $DF(2) = \{2\}$

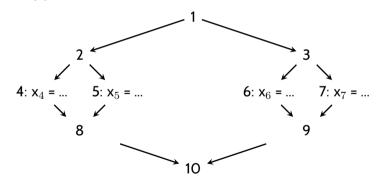


- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$

- 3 5 • $DF(1) = \emptyset$ • $DF(2) = \{2\}$ • $DF(6) = \{2\}$ • $DF(3) = \{3, 6\}$
- **Control Flow Graph** Dominator tree 3 4 5 • $DF(4) = \{6\}$ • $DF(5) = \{3, 6\}$

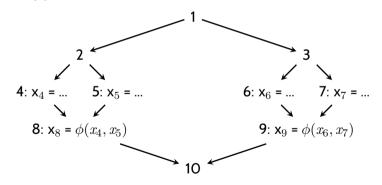
Dominance frontier is not enough!

- Whenever a node *n* contains a definition of some uid % x, then any node *m* in the dominance frontier of *n* needs a ϕ statement for % x.
- But, that is not the only place where ϕ statements are needed



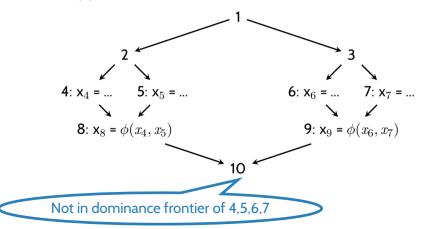
Dominance frontier is not enough!

- Whenever a node *n* contains a definition of some uid % x, then any node *m* in the dominance frontier of *n* needs a ϕ statement for % x.
- But, that is not the only place where ϕ statements are needed



Dominance frontier is not enough!

- Whenever a node *n* contains a definition of some uid % x, then any node *m* in the dominance frontier of *n* needs a ϕ statement for % x.
- But, that is not the only place where ϕ statements are needed



SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the *iterated dominance frontier* $IDF(M) = \bigcup IDF_i(M)$, where

•
$$IDF_0(M) = DF(M)$$

• $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$

SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the iterated dominance frontier $IDF(M) = \bigcup IDF_i(M)$, where

•
$$IDF_0(M) = DF(M)$$

- $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$
- For any node x, let Def(x) be the set of nodes that define x
- Finally, we can characterize ϕ statement placement

Insert a ϕ statement for x at every node in IDF(Def(x))

Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\% x = \phi(\% x_1, ..., \$ x_k)$ in block *n*, *n* must have exactly *k* predecessors $p_1, ... p_k$
- Insert a new block along each edge $p_i \rightarrow n$ which executes $\% x = \% x_i$ (program no longer satisfies SSA property!)

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\% x = \phi(\% x_1, ..., \$ x_k)$ in block *n*, *n* must have exactly *k* predecessors $p_1, ... p_k$
- Insert a new block along each edge $p_i \rightarrow n$ which executes $\% x = \% x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions