COS320: Compiling Techniques

Zak Kincaid

March 5, 2020
Parsing III: LR parsing
Bottom-up parsing

- Stack holds a word in \((N \cup \Sigma)^*\) such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack.
- At any time, may non-deterministically choose a rule \(A ::= \gamma_1 \ldots \gamma_n\) and apply it in reverse: pop \(\gamma_n \ldots \gamma_1\) off the top of the stack, and push \(A\).
- Accept when stack just contains start non-terminal.

\[
\begin{align*}
<S> &::= +<S> \mid \\
 &::= (<S>) \mid x
\end{align*}
\]
\[
<\text{S}> ::= <\text{B}>+<\text{S}> \mid <\text{B}>
\]

\[
<\text{B}> ::= (<\text{S}>) \mid \text{x}
\]

(, $\epsilon \rightarrow (
), $\epsilon \rightarrow)$

+, $\epsilon \rightarrow +$

\text{x}, $\epsilon \rightarrow \text{x}$

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>ϵ</td>
<td>$(x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$$$</td>
<td>$(x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$($$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$\text{x}($$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$<\text{B}>$$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$+$+$<\text{B}>$$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$\text{x}+$+$<\text{B}>$$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$<\text{B}>+$+$<\text{B}>$$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$<\text{S}>+$+$<\text{B}>$$</td>
<td>$x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$<\text{S}>$$</td>
<td>$(x+x)+x$</td>
</tr>
<tr>
<td>q_1</td>
<td>$<\text{S}>$$</td>
<td>$x+x)+x$</td>
</tr>
</tbody>
</table>

Diagram:

- Start at q_0
- Transition rules:
 - $\epsilon, \epsilon \rightarrow \$$
 - $\epsilon, <\text{S}>\$$ \rightarrow \epsilon$
 - $\epsilon, <\text{S}>+<\text{B}> \rightarrow <\text{S}>
 - $\epsilon, <\text{B}> \rightarrow <\text{S}>
 - $\epsilon,)<\text{S}> (\rightarrow <\text{B}>
 - $\epsilon, \text{x} \rightarrow <\text{B}>

- Final state q_f
LL vs LR

• LL parsers are top-down, LR parsers are bottom-up
• Easier to write LR grammars
 • Every LL(k) grammar is also LR(k), but not vice versa.
 • No need to eliminate left (or right) recursion
 • No need to left-factor
• Harder to write LR parsers
 • But parser generators will do it for us!
Bottom-up PDA has two kinds of actions:

- **Shift**: move lookahead token to the top of the stack
- **Reduce**: remove $\gamma_n, \ldots, \gamma_1$ from the top of the stack, replace with A (where $A ::= \gamma_1 \ldots \gamma_n$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
 - When should the parser shift?
 - When should the parser reduce?

$$
\begin{align*}
\langle S \rangle &::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle \\
\langle B \rangle &::= (\langle S \rangle) \mid x
\end{align*}
$$
Determinizing the bottom-up PDA

- **Intuition**: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
Determinizing the bottom-up PDA

• **Intuition**: reduce greedily
 • If any reduce action applies, then apply it
 • Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 • If no reduce action applies, then shift

• Can use the states of the PDA to implement greedy strategy
 • State tracks top few symbols of the stack

• **Challenge**: after applying reduce action, need to re-compute the state
Determinizing the bottom-up PDA

- **Intuition:** reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift

- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack

- **Challenge:** after applying reduce action, need to re-compute the state
- **Solution:** use the stack to store states
 - Shift reads current state off the top of the stack, then pushes the next state
 - Reduce $A ::= \gamma_1, \ldots, \gamma_n$ pops last n states, then proceeds from $(n - 1)$th state as if A had been read
Warm-up: LR(0) parsing

\[
\begin{align*}
\langle S \rangle & ::= (\langle L \rangle) \mid x \\
\langle L \rangle & ::= \langle S \rangle \mid \langle L \rangle ; \langle S \rangle
\end{align*}
\]

- LR(0) = LR with 0-symbol lookahead
- An LR(0) item of a grammar \(G = (N, \Sigma, R, S) \) is of the form \(A ::= \gamma_1 \cdots \gamma_i \bullet \gamma_{i+1} \cdots \gamma_n \), where \(A ::= \gamma_1 \cdots \gamma_n \) is a rule of \(G \)
 - \(\gamma_1 \cdots \gamma_i \) derives part of the word that has already been read
 - \(\gamma_{i+1} \cdots \gamma_n \) derives part of the word that remains to be read
- LR(0) items \sim states of an NFA that determines when a reduction applies to the top of the stack
- LR(0) items for the above grammar:
 - \(\langle S \rangle ::= \bullet (\langle L \rangle), \langle S \rangle ::= (\bullet \langle L \rangle) \), \(\langle S \rangle ::= (\langle L \rangle \bullet), \langle S \rangle ::= (\langle L \rangle) \bullet, \)
 - \(\langle S \rangle ::= \bullet x, \langle S \rangle ::= x \bullet, \)
 - \(\langle L \rangle ::= \bullet \langle S \rangle, \langle L \rangle ::= \langle S \rangle \bullet, \)
 - \(\langle L \rangle ::= \bullet \langle S \rangle; \langle S \rangle, \langle L \rangle ::= \langle L \rangle \bullet; \langle S \rangle, \langle L \rangle ::= \langle L \rangle; \bullet \langle S \rangle, \langle L \rangle ::= \langle L \rangle; \langle S \rangle \bullet, \)
closure and goto

- For any set of items I, define $\text{closure}(I)$ to be the least set of items such that
 - $\text{closure}(I)$ contains I
 - If $\text{closure}(I)$ contains an item of the form $A ::= \alpha \bullet B \beta$ where B is a non-terminal, then $\text{closure}(I)$ contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$

- $\text{closure}(I)$ saturates I with all items that may be relevant to reducing via I
 - E.g., $\text{closure}(\{ <S> ::= (\bullet <L>) \}) = \{ <S> ::= (\bullet <L>), <L> ::= \bullet <S>, <L> ::= \bullet <L>; <S>, <S> ::= \bullet (\langle L \rangle) <S> ::= \bullet x \}$
 - Part of the not-quite greedy strategy: don’t try to reduce using all rules all the time, track only a relevant subset
For any set of items I, define $\text{closure}(I)$ to be the least set of items such that
- $\text{closure}(I)$ contains I
- If $\text{closure}(I)$ contains an item of the form $A ::= \alpha \bullet B \beta$ where B is a non-terminal, then $\text{closure}(I)$ contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$

$\text{closure}(I)$ saturates I with all items that may be relevant to reducing via I
- E.g., $\text{closure}(<S> ::= (\bullet <L>)) = <S> ::= (\bullet <L>), <L> ::= \bullet <S>, <L> ::= \bullet <L>; <S>, <S> ::= \bullet (<L>) <S> ::= \bullet x$
- Part of the not-quite greedy strategy: don’t try to reduce using all rules all the time, track only a relevant subset

For any item set I, and (terminal or non-terminal) symbol $\gamma \in N \cup \Sigma$ define $\text{goto}(I, \gamma) = \text{closure}(\{A ::= \alpha \gamma \bullet \beta | A ::= \alpha \bullet \gamma \beta \in I\})$
- I.e., $\text{goto}(I, \gamma)$ is the result of “moving \bullet across γ”
- E.g., $\text{goto}(\text{closure}(<S> ::= (\bullet <L>)), <L>)) = <S> ::= (<L>\bullet), <L> ::= <L>\bullet; <S>$,
Mechanical construction of LR(0) parsers

1. Add a new production $S' ::= S\$ to the grammar.
 - S' is new start symbol
 - $\$ marks end of the stack

2. Construct transitions as follows: for each closed item set I,
 - For each item of the form $A ::= \gamma_1\ldots\gamma_n \bullet$ in I, add reduce transition
 \[
 \epsilon, IJ_1\ldots J_{n-1}K \rightarrow K' K, \text{ where } K' = \text{goto}(K, A)
 \]
 - For each item of the form $A ::= \gamma \bullet a\beta$ in I with $a \in \Sigma$, add a shift transition
 \[
 a, I \rightarrow I' I \text{ where } I' = \text{goto}(I, a)
 \]

Resulting automaton is deterministic \iff grammar is LR(0)
Conflicts

• Recall: Automaton is deterministic \iff grammar is LR(0)

• Observe: for LR(0) grammars, each closed set of items is either a *reduce* state or a *shift* state

 • Reduce state has exactly one item, and it’s of the form $\{A ::= \gamma\bullet\}$
 • Shift state has *no* items of the form $A ::= \gamma\bullet$

• **Reduce/reduce conflict**: state has two or more items of the form $A ::= \gamma\bullet$ (choice of reduction is non-deterministic!)

• **Shift/reduce conflict**: state has an item of the form $A ::= \gamma\bullet$ *and* one of the form $A ::= \gamma \bullet a\beta$ (choice of whether to shift or reduce is non-deterministic!)
Simple LR (SLR)

- Simple LR is a straightforward extension of LR(0) with a lookahead token.
- **Idea**: proceed exactly as LR(0), but eliminate (some) conflicts using lookahead token.
 - For each item of the form $A ::= \gamma_1 ... \gamma_n \bullet$ in I, add reduce transition
 $$\epsilon, IJ_1 ... J_{n-1} K \rightarrow K' K, \text{ where } K' = \text{goto}(K, A)$$
 with any lookahead token in follow(A).
- Example: the following grammar is SLR, but not LR(0).

 $<$S$> ::= <$Tb

 $<$T$> ::= a$<T>$ | ϵ

Consider: closure($\{<S'> ::= \bullet <S>$\}) contains $T ::= \bullet$.
- SLR parser generators: Jison.
LR(1) parser construction

- LR(1) parser generators: Menhir, Bison
- An LR(1) item of a grammar $G = (N, \Sigma, R, S)$ is of the form $(A ::= \gamma_1 \ldots \gamma_i \bullet \gamma_{i+1} \ldots \gamma_n, a)$, where $A ::= \gamma_1 \ldots \gamma_n$ is a rule of G and $a \in \Sigma$
 - $\gamma_1 \ldots \gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1} \ldots \gamma_n$ derives part of the word that remains to be read
 - a is a lookahead symbol
- For any set of items I, define $\text{closure}(I)$ to be the least set of items such that
 - $\text{closure}(I)$ contains I
 - If $\text{closure}(I)$ contains an item of the form $(A ::= \alpha \bullet B \beta, a)$ where B is a non-terminal, then $\text{closure}(I)$ contains $(B ::= \bullet \gamma, b)$ for all $B ::= \gamma \in R$ and all $b \in \text{first}(\beta a)$.
- Construct PDA as in LR(0)
LALR(1)

• LR(1) transition tables can be very large
• LALR(1) (“lookahead LR(1)”) make transition table smaller by merging states that are identical except for lookahead
• Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this merging doesn’t create conflicts.
• LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison
Summary of parsing

• For any k, $LL(k)$ grammars are $LR(k)$
• SLR grammars are $LALR(1)$ are $LR(1)$
• In terms of language expressivity, there is an SLR (and therefore $LALR(1)$ and $LR(1)$ grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
• Not every deterministic context free language is $LL(k)$: \(\{ a^n b^n : n \in \mathbb{N} \} \cup \{ a^n c^n : n \in \mathbb{N} \} \) is DCFL but not $LL(k)$ for any k.\(^1\)

\(^1\)John C. Beatty, *Two iteration theorems for the LL(k) Languages*