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+ Reminder: HW2 due today
+ HW3 on course webpage. Due March 31. Start early!
+ You will implement a compiler for a simple imperative programming language (Oat),

targetting LLVMlite.
+ You may work individually or in pairs

+ Midterm next Thursday
- Covers material in lectures up to March 5th (this Thursday)
« Interpreters, program transformation, X86, IRs, lexing, parsing
- How to prepare

- Starton HW3
+ Review slides
+ Review example code from lectures (try re-implementing!)

- Review next Tuesday: come prepared with questions



Parsing II: LL parsing



Recall: Context-free grammars

« A context-free grammar G = (N, X, R, S) consists of:
« N: afinite set of non-terminal symbols

- X afinite alphabet (or set of terminal symbols)

+ RC Nx (NUX)* afinite set of rules or productions
+ § € N: the starting non-terminal.

« A derivation consists of a finite sequence of words 71, ..., v, € (NU X)* such that y; = S
and for each 1, ;41 is obtained from ~; by replacing a non-terminal symbol with the
right-hand-side of one of its rules

« The set of all strings w € 3* such that G has a derivation of w s the language of G, written
L(G).



Parsing
- Context-free grammars are generative: easy to find strings that belongs to £( G), not so

easy determine whether a given string belongs to £(G)
« Pushdown automata (PDA) are a kind of automata that recognize context-free languages

+ Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
- Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(,e— L

_)O €,e— 3 R 6% —e¢ ‘
start %
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Top-down parsing

Stack represents intermediate state of a derivation, minus the consumed part of the input string.
Start with S on the stack

Any time top of the stack is a non-terminal A4, non-deterministically choose arule 4 ::= v € R.
Pop A off the stack, and push ~

If the top of the stack is a terminal a, consume a from the input string and pop a off the stack

Accept when stack is empty
G(—e
),) =€
++ =€
X, X =+ €

<S> 1:= <B>+<S> | <B> start _)@ €€ — <s>$\/9\( 6% — e \@
<B> = (<S>) | x ‘\t)j

€,<S> — <B>+<S>
€,<S8> — <B>
€,<B> — (<B>)
€,<B> — x




<S>
<B>:

= <B>+<S> | <B>
= (<S>) | x

G(—e
),) e
+,+ =€
X, X —> €

e,e—><S>$A €% — e
start =»( g0 )%/ > I

€,<S> — <B>+<S>
€,<S> — <B>
€,<B> — (<B>)
€,<B> — x

State Stack | Input
q0 € | (x+x)+x
q <S>$ | (x+x)+x
q1 <B>+<S>$ | (x+x)+x
Q1 (<S>)+<S>$ | (x+x)+x
q <S>)+<S>$ | x+x)+x
Q <B>+<S>)+<S>$ | x+x)+x
Q1 X+<S>)+<S>$ | x+x)+x
Q +<S>)+<S>$ | +x)+x
q1 <S>)+<S>$ | x)+x
q <B>)+<S>$ | x)+x
Q X)+<S>$ | x)+x
qQ )¥<S>$ | )+x
q +<S>$ | +x
q1 <S$>$ | x
Q1 <B>$ | x
q x$ | x
q $|e€

€| €

9




Bottom-up parsing

Stack holds a word in (N U X)* such that it is possible to derive the part of the input string that has
been consumed from its reverse.

At any time, may read a letter from input string and push it on top of the stack

At any time, may non-deterministically choose arule A ::= ~;...,, and apply it in reverse: pop
Yn...1 Off the top of the stack, and push A.

Accept when stack just contains start non-terminal
Ge—(
), e—=)
+t,e > +
X, € = X

- + e,e—~$ A5,<S>$—>e
<S> 1= <B>+<S> | <B> Start_)@ >%/ (o

<B> = (<S>) | x

€,<S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€,x — <B>



<S>:
<B>:

= <B>+<S> | <B>
= (<S>) | x

Ge—(
), e—)
+,e = +
X, € = X

€,e—$ €,<8>% — €
start =»( 90 >%/ >(( 9

€,<S>+<B> — <S>
€,<B> — <S>
€,)<S>( — <B>
€, X — <B>

State Stack | Input
q0 € | (x+x)+x
@ $ | (xH)+x
qQ ($ | x+x)+x
@ X($ | +x)+x
Q1 <B>($ | +x)+x
q +<B>($ | x)+x
q1 X+<B>($ | )+x
q <B>+<B>($ | )+x
q1 <S>+<B>($ | )+x
Q <S>($ | )*x
@ )<S>($ | +x
q1 <B>$ | +x
q1 +<B>$ | x
q1 x+<B>$ | €
Q1 <B>+<B>$ | €
q1 <S>+<B>$ €
q1 <S$>$ | €
€ €

9f




Parsing overview

- Basic problem with both top-down and bottom-up construction: non-determinism
+ Non-deterministic search is inefficient
+ E.g, consider<S> ::= <S>a | <S>b | e. Top-down parser must “guess’ the entire input string at
the beginning (breadth-first backtracking search takes exponential time in length of input string,
depth-first does not terminate).
- Algorithms for parsing any context free grammar in cubic' time, based on dynamic
programming (Earley, and Cocke-Younger-Kasami).

'Also sub-cubic galactic algorithms



Parsing overview

- Basic problem with both top-down and bottom-up construction: non-determinism
- Non-deterministic search is inefficient

+ E.g, consider<S> ::= <S>a | <S>b | e. Top-down parser must “guess’ the entire input string at
the beginning (breadth-first backtracking search takes exponential time in length of input string,
depth-first does not terminate).

- Algorithms for parsing any context free grammar in cubic' time, based on dynamic
programming (Earley, and Cocke-Younger-Kasami).

+ Parser generators use these same ideas, but restricted to cases where we can eliminate
non-determinism.
+ Possible for both top-down and bottom-up style
- Today: LL (Left-to-right, Leftmost derivation) parsers: top-down
+ Easy to understand & write by hand
- Next time: LR (Left-to-right, Rightmost derivation) parsers: bottom-up
+ More general, (variations) implemented in parser generators

'Also sub-cubic galactic algorithms



LL parsing
((—e
D) e
++ =€
X, X — €

e e,e~><S>$g €% —e

<B> = (<S>) | x
€,<S> — <B>+<S>
€,<8> — <B>
€,<B> — (<B>)
€,<B> = x

+ “Any time top of the stack is a non-terminal A, non-deterministically choose a production
A ::=~ € R. Pop A off the stack, and push v”

+ Key problem: need to deterministically choose which production to use
- Solution: Look at the next input symbol, but don't consume it (lookahead)

+ Thisis LL(1) parsing. LL(k) allows k lookahead tokens



- We say that a grammar is . (%) if when we look ahead % symbols in a top-down parser,
we know which rule we should apply.

- Let G = (N, %, R, S) be agrammar. Gis LL(k) iff: forany S =* a A3, for any word w € ©%, if
there is some A ::= v € Rsuch that v3 =* wp’ (for some 3’), then ~ is unique.

- Not every context-free language has an LL(k) grammar.

- {d'V :i=jV2i=j}isnot LL(k) forany k

+ Which of the following are LL(1) grammars?

© <S> = a<S> | b<S> | e

© <S> :u=<S>a|<S>b | e
¢ <S> = <B>+<S> | <B>
<B> 1= (<S>) | x



- We say that a grammar is . (%) if when we look ahead % symbols in a top-down parser,
we know which rule we should apply.
- Let G = (N, %, R, S) be agrammar. Gis LL(k) iff: forany S =* a A3, for any word w € ©%, if
there is some A ::= v € Rsuch that v3 =* wp’ (for some 3’), then ~ is unique.

- Not every context-free language has an LL(k) grammar.
- {d'V :i=jV2i=j}isnot LL(k) forany k
+ Which of the following are LL(1) grammars?
© <S> = a<S> | b<S> | €

More generally, any grammar that results from our DFA—CFG conversion
© <S> :=<S>a|<S>b | e
¢+ <S> = <B>+<S> | <B>

<B> 1= (<S>) | x



Left-factoring

+ The grammar
<S> 1= <B>+<S> | <B>

<B> = (<S$>) | x

is not LL(1): ( lookahead can't distinguish the two <S> rules
+ However, there is an LL(1) grammar for the language



Left-factoring

+ The grammar

<S> 1= <B>+<S> | <B>

<B> = (<S$>) | x

is not LL(1): ( lookahead can't distinguish the two <S> rules
+ However, there is an LL(1) grammar for the language

<S> ;:= <B><R>

<R> = +<S> | €

<B> = (<S>) | x

- General strategy: factor out rules with common prefixes (“left factoring”)



Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A4 such that A =" A~ (for some )
+ Left-recursive grammars are not LL(k) for any &
- Consider:

<S> 1= <S>+<B> | <B>

<B> = (<S>) | x



Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A4 such that A =" A~ (for some )

+ Left-recursive grammars are not LL(k) for any &
- Consider:

<S> ::= <S>+<B> | <B>
<B> = (<S>) | x
Can remove left recursion as follows:

<S> :=<B><S’>
<§’> = +<B><S’> | €

<B> 1= (<S>) | x

(Recognizes the same language, but parse trees are different!)



Mechanical construction of LL(1) parsers

Fix agrammar G = (N, X, R, S)

Forany word y € (NU X)*, define first(y) = {a € ¥ : v =" aw}

Forany word y € (NU X)*, say that v is nullable if y =" ¢

For any non-terminal 4, define follow(A4) = {a € ¥ : 3y,~'.S = vAay'}
Transition table for G can be computed using first, follow, and nullable:

@ For each non-terminal A and letter ¢, initialize T'(4, a) to
@ Foreachrule 4 ::=~

« Add vy to I'(4, a) for each a € first(v)

« If v is nullable, add v to I'( A, a) for each a € follow(A)



Mechanical construction of LL(1) parsers

Fix agrammar G = (N, X, R, S)

Forany word y € (NU X)*, define first(y) = {a € ¥ : v =" aw}

Forany word y € (NU X)*, say that v is nullable if y =" ¢

For any non-terminal 4, define follow(A4) = {a € ¥ : 3y,~'.S = vAay'}
Transition table for G can be computed using first, follow, and nullable:

@ For each non-terminal A and letter ¢, initialize T'(4, a) to
@ Foreachrule 4 ::=~

« Add vy to I'(4, a) for each a € first(v)

« If v is nullable, add v to I'( A, a) for each a € follow(A)

Gis LL(1) iff T'(A, a) is empty or singleton for all A and a



Mechanical construction of LL(l) parsers

Fix agrammar G = (N, X, R, S)
Forany word y € (NU X)*, define first(y) = {a € ¥ : v =" aw}
Forany word y € (NU X)*, say that v is nullable if y =" ¢
For any non-terminal 4, define follow(A4) = {a € ¥ : 3y,~'.S = vAay'}
Transition table for G can be computed using first, follow, and nullable:
@ For each non-terminal A and letter g, initialize T'(4, a) to §
@ Foreachrule 4 ::=~
« Add vy to I'(4, a) for each a € first(v)
« If v is nullable, add v to I'( A, a) for each a € follow(A)
Gis LL(1) iff T'(A, a) is empty or singleton for all A and a

Operation of the parser on a word w:
- Start with stack <S>
+ While w not empty
« If top of the stack is a terminal a and w = aw’, pop and set w = '
« If top of the stack is a non-terminal A and w = aw/, pop and push (singleton) T'( A, w)
(or reject of I'( A, w) is empty)
- Accept if stack is empty; reject otherwise.



Computing nullable

- nullable is the smallest set of non-terminals such that if there is some A ::= ~v1...7, € R
with 71, ..., 7, € nullable implies A € nullable
- Fixpoint computation:
- nullabley; = 0
- nullable;11 = {4 : 31, ...,v» € nullable;. 4 ::= ...y, € R}

+ nullable = | J nullable;
=0
nullable « 0;
changed < true;
while changed do
changed < false;
for A :=~i...7n € Rdo
if A ¢ nullable A ~1, ...,v, € nullable then
nullable < nullable U { A};
‘ changed < true;

- Fixpoint computations appear everywhere!
- Later we will see how they are used in dataflow analysis



Computing first and follow

- first is the smallest function? such that
- For each a € 3, first(a) = {a}
 Foreach A ::= ~1...9;..7, € R, with ~1, ..., ;—1 nullable, first(A) D first(~;)
- follow is the smallest function such that
+ Foreach A ::= ~1...y;..y, € R, with v;11, ..., 7, nullable, follow(~;) O follow(A)
- Foreach A == vi...7;..%j..7n € R, with y;11, ..., 7,1 nullable, follow(;) D first(A)

+ Both can be computed using a fixpoint algorithm, like nullable

2pointwise order: f < gif forall z, f(z) < g(z)



