COS320: Compiling Techniques

Zak Kincaid

February 27, 2020

Parsing I: Context-free languages

Compiler phases (simplified)

- The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an abstract syntax tree (AST).
- Parser is responsible for reporting syntax errors if the token stream cannot be parsed
- Variable scoping, type checking, ... handled later (semantic analysis)
- An abstract syntax tree is a tree that represents the syntactic structure of the source code
- "Abstract" in the sense that it omits of the concrete syntax
- E.g., the following have the same abstract syntax tree:
- x + y * z
- $x+(y * z)$
- $(x)+(y * z)$
- $((x)+(y * z))$


```
// compute absolute value
    if (x<0) {
        return -x;
    } else {
        return x;
}
```

```
IF, LPAREN, IDENT "x", LT, INT 0, RPAREN, LBRACE,
RETURN, MINUS, IDENT "x", SEMI,
RBRACE, ELSE, LBRACE,
RETURN, IDENT "x", SEMI,
RBRACE
```


Implementing a parser

- Option 1: By-hand (recursive descent)
- Clang, gcc (since 3.4)
- Libraries can make this easier (e.g., parser combinators - parsec)
- Option 2: Use a parser generator
- Much easier to get right ("specification is the implementation")
- Parser generator warns of ambiguities, ill-formed grammars, etc.
- gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
- Parser generators: Yacc, Bison, ANTLR, menhir

Defining syntax

- Recall:
- An alphabet Σ is a finite set of symbols (e.g., $\{0,1\}$, ASCII, unicode).
- A word (or string) over Σ is a sequence of symbols in Σ
- A language over Σ is a set of words over Σ
- The set of syntactically valid programs in a programming language is a language
- Conceptually: alphabet is ASCII or Unicode
- In practice: (often) over token types
- Lexer gives us a higher-level view of source text that makes it easier to work with
- This language is often specified by a context-free grammar

```
<expr> ::=<int>
    | <var>
    | <expr>+<expr>
    | <expr>*<expr>
    | (<expr>)
-Well-formed expressions (character-level):
\[
3+2 * x
\]
\[
(x * 100)+(y * 10)+z, \ldots
\]
- Well-formed expressions (token-level):
```

<int>+<int>*<var>,

```
<int>+<int>*<var>,
(<var>*<int>)+(<var>*<int>)+<var>...
```

```
(<var>*<int>)+(<var>*<int>)+<var>...
```

```

\section*{Why not regular expressions?}
- Programming languages are typically not regular.
- E.g., the language of valid expressions
- See: pumping lemma, Myhill-Nerode theorem - COS 487

\section*{Context-free grammars}
- A context-free grammar \(G=(N, \Sigma, R, S)\) consists of:
- \(N\) : a finite set of non-terminal symbols
- \(\Sigma\) : a finite alphabet (or set of terminal symbols)
- \(R \subseteq N \times(N \cup \Sigma)^{*}\) a finite set of rules or productions
- Rules often written \(A \rightarrow w\)
- \(A\) is a non-terminal (left-hand side)
- \(w\) is a word over \(N\) and \(\Sigma\) (right-hand side)
- \(S \in N\) : the starting non-terminal.

\section*{Context-free grammars}
- A context-free grammar \(G=(N, \Sigma, R, S)\) consists of:
- \(N\) : a finite set of non-terminal symbols
- \(\Sigma\) : a finite alphabet (or set of terminal symbols)
- \(R \subseteq N \times(N \cup \Sigma)^{*}\) a finite set of rules or productions
- Rules often written \(A \rightarrow w\)
- \(A\) is a non-terminal (left-hand side)
- \(w\) is a word over \(N\) and \(\Sigma\) (right-hand side)
- \(S \in N\) : the starting non-terminal.
- Backus-Naur form is specialized syntax for writing context-free grammars
- Non-terminal symbols are written between <,>s
- Rules written as <expr> : := <expr>+<expr>
- |abbreviates multiple productions w/ same left-hand side
```

- <expr> ::= <expr>+<expr> | <expr>*<expr> means
<expr> ::= <expr>+<expr>
<expr> ::= <expr>*<expr>

```

\section*{Derivations}
- A derivation consists of a finite sequence of words \(w_{1}, \ldots, w_{n} \in(N \cup \Sigma)^{*}\) such that \(w_{1}=S\) and for each \(i, w_{i+1}\) is obtained from \(w_{i}\) by replacing a non-terminal symbol with the right-hand-side of one of its rules
- Example:
- Grammar: <S> : := <S><S> | (<S>) | \(\epsilon\)
- Derivations:
\[
\begin{aligned}
& \langle\mathrm{S}\rangle \Rightarrow(\langle\mathrm{S}\rangle) \Rightarrow() \\
& \langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle\langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle(\langle\mathrm{S}\rangle) \Rightarrow(\langle\mathrm{S}\rangle)(\langle\mathrm{S}\rangle) \Rightarrow()(\langle\mathrm{S}\rangle) \Rightarrow()() \\
& \langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle\langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle(\langle\mathrm{S}\rangle) \Rightarrow\langle\mathrm{S}\rangle() \Rightarrow(\langle\mathrm{S}\rangle)() \Rightarrow((\langle\mathrm{S}\rangle))() \Rightarrow(())()
\end{aligned}
\]
- Formally:
- For each \(i\), there is some \(u, v \in(N \cup \Sigma)^{*}\) some \(A \in N\), and some \(x \in(N \cup \Sigma)^{*}\) such that \(w_{i}=u A v, w_{i+1}=u x v\), and \((A, x) \in R\).
- The set of all strings \(w \in \Sigma^{*}\) such that \(G\) has a derivation of \(w\) is the language of \(G\), written \(\mathcal{L}(G)\).

\section*{Derivations}
- A derivation consists of a finite sequence of words \(w_{1}, \ldots, w_{n} \in(N \cup \Sigma)^{*}\) such that \(w_{1}=S\) and for each \(i, w_{i+1}\) is obtained from \(w_{i}\) by replacing a non-terminal symbol with the right-hand-side of one of its rules
- Example:
- Grammar: <S> : := <S><S> | (<S>) | \(\epsilon\)
- Derivations:
\[
\begin{aligned}
& \langle\mathrm{S}\rangle \Rightarrow(\langle\mathrm{S}\rangle) \Rightarrow() \\
& \langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle\langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle(\langle\mathrm{S}\rangle) \Rightarrow(\langle\mathrm{S}\rangle)(\langle\mathrm{S}\rangle) \Rightarrow()(\langle\mathrm{S}\rangle) \Rightarrow()() \\
& \langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle\langle\mathrm{S}\rangle \Rightarrow\langle\mathrm{S}\rangle(\langle\mathrm{S}\rangle) \Rightarrow\langle\mathrm{S}\rangle() \Rightarrow(\langle\mathrm{S}\rangle)() \Rightarrow((\langle\mathrm{S}\rangle))() \Rightarrow(())()
\end{aligned}
\]
- Formally:
- For each \(i\), there is some \(u, v \in(N \cup \Sigma)^{*}\) some \(A \in N\), and some \(x \in(N \cup \Sigma)^{*}\) such that \(w_{i}=u A v, w_{i+1}=u x v\), and \((A, x) \in R\).
- The set of all strings \(w \in \Sigma^{*}\) such that \(G\) has a derivation of \(w\) is the language of \(G\), written \(\mathcal{L}(G)\).
- A derivation is leftmost if we always substitute the leftmost non-terminal, and rightmost if we always substitute the rightmost non-terminal.

\section*{Parse trees}
- A parse tree is a tree representation of a derivation
- Each leaf node is labelled with a terminal
- Each internal node is labelled with a non-terminal
- If an internal node has label \(X\), its children (read left-to-right) are the right-hand-side of a rule w/ left-hand-side \(X\)
- The root is labelled with the start symbol

Parse tree for ()(), with grammar <S> : : \llS><S> | (<S>) | \(\epsilon\)


\section*{Parse trees}
- A parse tree is a tree representation of a derivation
- Each leaf node is labelled with a terminal
- Each internal node is labelled with a non-terminal
- If an internal node has label \(X\), its children (read left-to-right) are the right-hand-side of a rule w/ left-hand-side \(X\)
- The root is labelled with the start symbol
- Construct a parse tree from a derivating by "parallelizing" non-terminals
- Parse tree corresponds to many derivations
- Exactly one leftmost derivation (and exactly one rightmost derivation).

\section*{Ambiguity}
- A context-free grammar is ambiguous if there are two different parse trees for the same word.
- Equivalently: a grammar is ambiguous if some word has two different left-most derivations
```

<expr> ::=<int> | <var> | <expr>+<expr> | <expr>*<expr> | (<expr>)
<var> ::=a | ... |
<int> ::=0 | ... | 9

```
\(\bar{x}+\bar{y} \times z=1\)
1


\section*{Eliminating ambiguity}
- Ambiguity can often be eliminated by refactoring the grammar
- Some languages are inherently ambiguous: context-free, but every grammar that accepts the language is ambiguous. E.g. \(\left\{a^{i} b^{j} c^{k}: i=j\right.\) or \(\left.j=k\right\}\).

\section*{Eliminating ambiguity}
- Ambiguity can often be eliminated by refactoring the grammar
- Some languages are inherently ambiguous: context-free, but every grammar that accepts the language is ambiguous. E.g. \(\left\{a^{i} b^{j} c^{k}: i=j\right.\) or \(\left.j=k\right\}\).
- Unambiguous expression grammar
\[
\begin{gathered}
\text { <expr> }::=<\text { term>+<expr> |<term> } \\
\text { <term> }::=\text { <term>*<factor> |<factor> } \\
\text { <factor> }::=<\text { var> } \mid \text { <int> } \mid(<\text { expr> })
\end{gathered}
\]
- + associates to the right and and * associates to the left (recursive case right (respectively, left) of operator)
- * has higher precedence than \(+(*\) is farther from start symbol)

\section*{Regular languages are context-free}

Suppose that \(L\) is a regular language. Then there is an NFA \(A=(Q, \Sigma, \delta, s, F)\) such that \(\mathcal{L}(A)=L\). How can we construct a context-free grammar that accepts \(L\) ?

\section*{Regular languages are context-free}

Suppose that \(L\) is a regular language. Then there is an NFA \(A=(Q, \Sigma, \delta, s, F)\) such that \(\mathcal{L}(A)=L\). How can we construct a context-free grammar that accepts \(L\) ?
\(G=(N, \Sigma, R, S)\), where:
- \(N=Q\)
- \(S=s\)
- \(R=\left\{q::=a q^{\prime}:\left(q, a, q^{\prime}\right) \in \Delta\right\} \cup\{q::=\epsilon: q \in F\}\)

\section*{Regular languages are context-free}

Suppose that \(L\) is a regular language. Then there is an NFA \(A=(Q, \Sigma, \delta, s, F)\) such that \(\mathcal{L}(A)=L\). How can we construct a context-free grammar that accepts \(L\) ?
\(G=(N, \Sigma, R, S)\), where:
- \(N=Q\)
- \(S=s\)
- \(R=\left\{q::=a q^{\prime}:\left(q, a, q^{\prime}\right) \in \Delta\right\} \cup\{q::=\epsilon: q \in F\}\)
- Consequence: could fold lexer definition into grammar definition
-Why not?
- Separation of concerns
- Ambiguity is easily understood at lexer level, not parser level
- Parser generators only handle some context-free grammars
- Non-determinism is easy at the lexer level (NFA \(\rightarrow\) DFA conversion)
- Non-determinism is hard at the parser level (deterministic CFL \(\neq\) non-deterministic CFL)

\section*{Pushdown automata}
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing <S> : := <S><S> | (<S>) | \(\epsilon\) :
- Stack alphabet: \$ marks bottom of the stack, \(L\) marks unbalanced left paren


\section*{Pushdown automata}
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :.: DFA:Regular languages
- PDA ~NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing <S> : := <S><S> | (<S>) | \(\epsilon\) :
- Stack alphabet: \$ marks bottom of the stack, \(L\) marks unbalanced left paren


\section*{Pushdown automata}
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing <S> : := <S><S>|(<S>)| \(\epsilon\) :
- Stack alphabet: \$ marks bottom of the stack, \(L\) marks unbalanced left paren


\section*{Pushdown automata}
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing <S> : := <S><S> | (<S>) | \(\epsilon\) :
- Stack alphabet: \$ marks bottom of the stack, \(L\) marks unbalanced left paren


\section*{Pushdown automata}
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :.: DFA:Regular languages
- PDA ~NFA + a stack
- Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing <S> : := <S><S> | (<S>) | \(\epsilon\) :
- Stack alphabet: \$ marks bottom of the stack, \(L\) marks unbalanced left paren


\section*{Pushdown automata, formally}
- A push-down automaton \(A=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)\) consists of
- \(Q\) : a finite set of states
- \(\Sigma\) : an (input) alphabet
- \(\Gamma\) : a (stack) alphabet
- \(\Delta \subseteq \underbrace{Q}_{\text {source }} \times \underbrace{(\Sigma \cup\{\epsilon\})}_{\text {read input }} \times \underbrace{(\Gamma \cup\{\epsilon\})}_{\text {read stack }} \times \underbrace{Q}_{\text {dest }} \times \underbrace{(\Gamma \cup\{\epsilon\})}_{\text {write stack }}\), the transition relation
- \(s \in Q\) : start state
- \(F \subseteq Q\) : set of final (accepting) states

\section*{Pushdown automata, formally}
- A push-down automaton \(A=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)\) consists of
- \(Q\) : a finite set of states
- \(\Sigma\) : an (input) alphabet
- \(\Gamma\) : a (stack) alphabet
- \(\Delta \subseteq \underbrace{Q}_{\text {source }} \times \underbrace{(\Sigma \cup\{\epsilon\})}_{\text {read input }} \times \underbrace{(\Gamma \cup\{\epsilon\})}_{\text {read stack }} \times \underbrace{Q}_{\text {dest }} \times \underbrace{(\Gamma \cup\{\epsilon\})}_{\text {write stack }}\), the transition relation
- \(s \in Q\) : start state
- \(F \subseteq Q\) : set of final (accepting) states
- A pushdown accepts a word \(w\) if \(w\) can be written as \(w_{1} w_{2} \ldots w_{n}\) (each \(\left.w_{i} \in(\Sigma \cup\{\epsilon\})\right)\) s.t. there exists \(q_{0}, q_{1}, \ldots, q_{n} \in Q\) and \(v_{0}, v_{1}, \ldots, v_{n} \in \Gamma\) such that
(1) \(q_{0}=s\) and \(v_{0}=\epsilon\) (i.e., the machine starts at the start state with an empty stactk)
(2) for all \(i\), we have \(\left(q_{i+1}, b\right) \in \delta\left(q_{i}, w_{i+1}, a\right)\), where \(v_{i}=a t\) and \(v_{i+1}=b t\) for some \(a, b \in \Gamma \cup\{\epsilon\}\) and \(t \in \Gamma^{*}\)
(3) \(q_{m} \in F\). (i.e., the machine ends at a final state).```

