COS320: Compiling Techniques

Zak Kincaid

April 9, 2020

Generic (forward) dataflow analysis algorithm

- Given:
 - Abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$
 - Transfer function
 post_c : Basic Block × L → L
 - Control flow graph G = (N, E, s)
- Compute: *least* annotation IN, OUT such that
 - IN[s] = ⊤
 For all n ∈ N, post_L(n, IN[n]) ⊑ OUT[n]
 For all p → n ∈ E, OUT[p] ⊑ IN(n)

Generic (forward) dataflow analysis algorithm

- Given:
 - Abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$
 - Transfer function $post_{\mathcal{L}} : Basic Block \times \mathcal{L} \to \mathcal{L}$
 - Control flow graph G = (N, E, s)
- Compute: *least* annotation IN, OUT such that

```
1 \mathbf{IN}[s] = \top

2 For all n \in N, post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]

3 For all p \to n \in E, \mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)
```

 $\mathbf{IN}[s] = \top, \mathbf{OUT}[s] = \bot;$ $IN[n] = OUT[n] = \bot$ for all other nodes *n*; work $\leftarrow N$: while *work* $\neq \emptyset$ do Pick some n from work work \leftarrow work $\setminus \{n\}$: old $\leftarrow \mathbf{OUT}[n]$: $\mathbf{IN}[n] \leftarrow \mathbf{IN}[n] \sqcup$ $\mathbf{OUT}[p]$: $p \rightarrow p \in E$ $\mathbf{OUT}[n] \leftarrow \mathsf{post}_{\mathcal{L}}(n, \mathbf{IN}[n]);$ if $old \neq \mathbf{OUT}[n]$ then work \leftarrow work \cup succ(n)return IN, OUT

(Partial) Correctness

```
\mathbf{IN}[s] = \top, \mathbf{OUT}[s] = \bot;
IN[n] = OUT[n] = \bot for all other nodes n;
work \leftarrow N:
while work \neq \emptyset do
       Pick some n from work:
      work \leftarrow work \setminus \{n\};
      old \leftarrow \mathbf{OUT}[n];
      \mathbf{IN}[n] \leftarrow \mathbf{IN}[n] \sqcup |
                                               \mathbf{OUT}[p];
                                    p \rightarrow n \in E
      \mathbf{OUT}[n] \leftarrow \mathsf{post}_{\mathcal{L}}(n, \mathbf{IN}[n]);
      if old \neq \mathbf{OUT}[n] then
             work \leftarrow work \cup succ(n)
return IN. OUT
```

When algorithm terminates, all constraints are satisfied. Invariants:

- $\mathbf{IN}[s] = \top$
- For any $n \in N$, if $\textit{post}_{\mathcal{L}}(n, \mathbf{IN}[n]) \not\sqsubseteq \mathbf{OUT}[n]$, we have $n \in \textit{work}$
- For any $p \to n \in E$ with $\mathbf{OUT}[p] \not\sqsubseteq \mathbf{IN}(n)$, we have $n \in \mathit{work}$

Optimality

Algorithm computes *least* solution.

- Invariant: $IN \sqsubseteq^* \overline{IN}$ and $OUT \sqsubseteq^* \overline{OUT}$, where
 - $\bullet~\overline{\mathbf{IN}}/\overline{\mathbf{OUT}}$ denotes any solution to the constraint system
 - \sqsubseteq^* is pointwise order on function space $N \rightarrow \mathcal{L}$
- Argument: let IN_i/OUT_i be IN/OUT at iteration *i*; n_i be workset item

•
$$\mathbf{IN}_{i+1}[n_i] = \mathbf{IN}_i[n_i] \sqcup \bigsqcup_{p \to n_i \in E} \mathbf{OUT}_i[p] \sqsubseteq \mathbf{IN}_i[n_i] \sqcup \bigsqcup_{p \to n_i \in E} \overline{\mathbf{OUT}}[p] \sqsubseteq \overline{\mathbf{IN}}[n_i]$$

• $\mathbf{OUT}_{i+1}[n_i] = \textit{post}_{\mathcal{L}}(n_i, \mathbf{IN}_{i+1}[n_i]) \sqsubseteq \textit{post}_{\mathcal{L}}(n_i, \overline{\mathbf{IN}}[n_i]) \sqsubseteq \overline{\mathbf{OUT}}[n_i]$

• Why does this algorithm terminate?

- Why does this algorithm terminate?
 - In general, it doesn't

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some *i*, we have $x_j = x_i$ for all $j \ge i$.

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some *i*, we have $x_j = x_i$ for all $j \ge i$.

• Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some *i*, we have $x_j = x_i$ for all $j \ge i$.

- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)
- Fact: *X* is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. $\Rightarrow (X \rightarrow \mathcal{L}, \sqsubseteq^*)$ satisfies a.c.c. (constant propagation)

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some *i*, we have $x_j = x_i$ for all $j \ge i$.

- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)
- Fact: *X* is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. $\Rightarrow (X \rightarrow \mathcal{L}, \sqsubseteq^*)$ satisfies a.c.c. (constant propagation)
- Termination argument:
 - If $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c., so does the space of annotations $(N \to \mathcal{L}, \sqsubseteq^*)$
 - $\mathbf{OUT}_0 \sqsubseteq^* \mathbf{OUT}_1 \sqsubseteq^* \dots$, where \mathbf{OUT}_i is the \mathbf{OUT} annotation at iteration i
 - This sequence eventually stabilizes \Rightarrow algorithm terminates

Local vs. Global constraints

- We had two specifications for available expressions
 - Global: *e* available at entry of *n* iff for every path from *s* to *n* in *G*:
 - (1) the expression e is evaluated along the path
 - 2) after the *last* evaluation of *e* along the path, no variables in *e* are overwritten
 - Local: *ae* is the *smallest* function such that
 - $ae(s) = \emptyset$
 - For each $p \to n \in E$, $\textit{post}_{\textit{AE}}(p, \textit{ae}(p)) \supseteq \textit{ae}(n)$
- Why are these specifications the same?

Coincidence

Let (L, ⊑, ⊔, ⊥, ⊤) be an abstract domain and let post_L be a transfer function.
 "Global specification" is formulated as join over paths:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in Path(s,n)} \textit{post}_{\mathcal{L}}(\pi,\top)$$

 $\textit{post}_{\mathcal{L}}$ is extended to paths by taking

$$\textit{post}_{\mathcal{L}}(n_1n_2...n_k, \top) = \textit{post}_{\mathcal{L}}(n_{k-1}, ..., \textit{post}_{\mathcal{L}}(n_1, \top))$$

- Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$ and *distributive* transfer function $post_{\mathcal{L}}$, and let \mathbf{IN}/\mathbf{OUT} be least solution to
 - 1 $IN[s] = \top$
 - **2** For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - **3** For all $p \to n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$

Then for all n, $\mathbf{JOP}[n] = \mathbf{IN}[n]$.

Coincidence

Let (L, ⊑, ⊔, ⊥, ⊤) be an abstract domain and let post_L be a transfer function.
 "Global specification" is formulated as join over paths:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in Path(s,n)} \textit{post}_{\mathcal{L}}(\pi,\top)$$

 $\textit{post}_{\mathcal{L}}$ is extended to paths by taking

$$\textit{post}_{\mathcal{L}}(n_1n_2...n_k, \top) = \textit{post}_{\mathcal{L}}(n_{k-1}, ..., \textit{post}_{\mathcal{L}}(n_1, \top))$$

- Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$ and *distributive* transfer function $post_{\mathcal{L}}$, and let \mathbf{IN}/\mathbf{OUT} be least solution to
 - $\bigcirc \mathbf{IN}[s] = \top$
 - **2** For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - **3** For all $p \to n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$
 - Then for all n, $\mathbf{JOP}[n] = \mathbf{IN}[n]$.
- $\textit{post}_{\mathcal{L}}$ is distributive if for all $x, y \in \mathcal{L}$,

 $\textit{post}_{\mathcal{L}}(n,x \sqcup y) = \textit{post}_{\mathcal{L}}(n,x) \sqcup \textit{post}_{\mathcal{L}}(n,y)$

Available expressions

Recal transfer function $post_{AE}$ for available expressions:

$$post_{AE}(x = e, E) = \{e' \in (E \cup \{e\}) : x \text{ not in } e'\}$$

post_{AE} is distributive:

$$post_{AE}(x = e, E_1 \cap E_2) = \{e' \in ((E_1 \cap E_2) \cup \{e\}) : x \text{ not in } e'\} \\ = \{e' \in E_1 \cup \{e\}) : x \text{ not in } e'\} \cap \{e' \in (E_2 \cup \{e\}) : x \text{ not in } e'\} \\ = post_{AE}(x = e, E_1) \cap post_{AE}(x = e, E_2)$$

Constant propagation

Is *post_{CP}* distributive?

Constant propagation

Is *post_{CP}* distributive?

$$post_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) = post_{CP}(x := x + y, \{x \mapsto \top, y \mapsto \top\})$$
$$= \{x \mapsto \top, y \mapsto \top\}$$

Constant propagation

Is *post_{CP}* distributive?

$$post_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) = post_{CP}(x := x + y, \{x \mapsto \top, y \mapsto \top\})$$
$$= \{x \mapsto \top, y \mapsto \top\}$$

$$post_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\}) = \{x \mapsto 1, y \mapsto 1\}$$
$$post_{CP}(x := x + y, \{x \mapsto 1, y \mapsto 0\}) = \{x \mapsto 1, y \mapsto 0\}$$
$$\{x \mapsto 1, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\} = \{x \mapsto 1, y \mapsto \top\}$$

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are *sets* of facts
- For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define $post_{\mathcal{L}}(n, F) = (F \setminus kill(n)) \cup gen(n)$.

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are *sets* of facts
- For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define $post_{\mathcal{L}}(n, F) = (F \setminus kill(n)) \cup gen(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for *existential* analyses: a fact holds at n if it holds along *some* path to n
 - E.g., a variable is possibly-uninitialized at *n* if it is possibly-uninitialized along some path to *n*.
 - \supseteq used for *universal* analyses: a fact holds at *n* if it holds along *all* paths to *n*
 - E.g., an expression is avaiable at n if it is available along all paths to n

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are *sets* of facts
- For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define $post_{\mathcal{L}}(n, F) = (F \setminus kill(n)) \cup gen(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for *existential* analyses: a fact holds at n if it holds along *some* path to n
 - E.g., a variable is possibly-uninitialized at *n* if it is possibly-uninitialized along some path to *n*.
 - \supseteq used for *universal* analyses: a fact holds at *n* if it holds along *all* paths to *n*
 - E.g., an expression is avaiable at \boldsymbol{n} if it is available along all paths to \boldsymbol{n}
- In either case, $\textit{post}_{\mathcal{L}}$ is monotone and distributive

$$\begin{aligned} \mathsf{post}_{\mathcal{L}}(n, F \cup G) &= ((F \cup G) \setminus \mathsf{kill}(n)) \cup \mathsf{gen}(n) \\ &= ((F \setminus \mathsf{kill}(n)) \cup (G \setminus \mathsf{kill}(n))) \cup \mathsf{gen}(n) \\ &= ((F \setminus \mathsf{kill}(n)) \cup \mathsf{gen}(n)) \cup (((G \setminus \mathsf{kill}(n))) \cup \mathsf{gen}(n)) \\ &= \mathsf{post}_{\mathcal{L}}(n, F) \cup \mathsf{post}_{\mathcal{L}}(n, G) \end{aligned}$$

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n along which x is never written to.
- If *n* uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n along which x is never written to.
- If *n* uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
 - Abstract domain 2^{Var} (each $V \in 2^{Var}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is *Var*, \bot is \emptyset

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n along which x is never written to.
- If *n* uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
 - Abstract domain 2^{Var} (each $V \in 2^{Var}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is *Var*, \perp is \emptyset
 - $kill(x := e) = \{x\}$
 - $gen(x := e) = \emptyset$

Reaching definitions analysis

- A *definition* is a pair (n, x) consisting of a basic block n, and a variable x such that n contains an assignment to x.
- We say that a definitoin (n, x) reaches a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:

Reaching definitions analysis

- A *definition* is a pair (n, x) consisting of a basic block n, and a variable x such that n contains an assignment to x.
- We say that a definition (n, x) reaches a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:
 - Abstract domain: $2^{N \times Var}$
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is $N \times Var$, \bot is \emptyset
 - $kill(n) = \{(m, x) : m \in N, (x := e) \text{ in } n\}$
 - $gen(n) = \{(n, x) : (x := e) \text{ in } n\}$

Wrap-up

- In a compiler, program analysis is used to inform optimization
 - Outside of compilers: verification, testing, software understanding...
- Dataflow analysis is a particular *fαmily* of progam analyses, which operates by solving a constraint system over an ordered set
 - Gen/kill analysis are a sub-family with nice properties
 - The basic idea of solving constraints systems over ordered sets appears in lotss of different places!
 - Parsing computation of first, follow, nullable
 - Networking computing shortest parths
 - Automated planning distance-to-goal estimation
 - ...