COS320: Compiling Techniques

Zak Kincaid

April 9, 2020
Generic (forward) dataflow analysis algorithm

• Given:
 • Abstract domain \((\mathcal{L}, \subseteq, \cup, \bot, \top)\)
 • Transfer function \(\text{post}_\mathcal{L} : \text{Basic Block} \times \mathcal{L} \rightarrow \mathcal{L}\)
 • Control flow graph \(G = (N, E, s)\)

• Compute: least annotation \(\text{IN}, \text{OUT}\) such that
 1. \(\text{IN}[s] = \top\)
 2. For all \(n \in N, \text{post}_\mathcal{L}(n, \text{IN}[n]) \subseteq \text{OUT}[n]\)
 3. For all \(p \rightarrow n \in E, \text{OUT}[p] \subseteq \text{IN}(n)\)
Generic (forward) dataflow analysis algorithm

- Given:
 - Abstract domain \((\mathcal{L}, \subseteq, \sqcup, \bot, \top)\)
 - Transfer function \(post^\mathcal{L} : \text{Basic Block} \times \mathcal{L} \to \mathcal{L}\)
 - Control flow graph \(G = (N, E, s)\)

- Compute: \textit{least} annotation \(\text{IN}, \text{OUT}\) such that
 1. \(\text{IN}[s] = \top\)
 2. For all \(n \in N, post^\mathcal{L}(n, \text{IN}[n]) \subseteq \text{OUT}[n]\)
 3. For all \(p \to n \in E, \text{OUT}[p] \subseteq \text{IN}(n)\)

\[
\begin{align*}
\text{IN}[s] &= \top, \text{OUT}[s] = \bot; \\
\text{IN}[n] &= \text{OUT}[n] = \bot \text{ for all other nodes } n; \\
\text{work} &\leftarrow N; \\
\text{while } \text{work} \neq \emptyset \text{ do} \\
&\hspace{1em}\text{Pick some } n \text{ from work}; \\
&\hspace{1em}\text{work} \leftarrow \text{work} \setminus \{n\}; \\
&\hspace{1em}\text{old} \leftarrow \text{OUT}[n]; \\
&\hspace{1em}\text{IN}[n] \leftarrow \text{IN}[n] \sqcup \bigsqcup_{p \to n \in E} \text{OUT}[p]; \\
&\hspace{1em}\text{OUT}[n] \leftarrow post^\mathcal{L}(n, \text{IN}[n]); \\
&\hspace{1em}\text{if } \text{old} \neq \text{OUT}[n] \text{ then} \\
&\hspace{2em}\text{work} \leftarrow \text{work} \cup \text{succ}(n)
\end{align*}
\]

return \(\text{IN}, \text{OUT}\)
(Partial) Correctness

\[\text{IN}[s] = \top, \text{OUT}[s] = \bot; \]
\[\text{IN}[n] = \text{OUT}[n] = \bot \text{ for all other nodes } n; \]
\[\text{work} \leftarrow N; \]
\[\text{while work} \neq \emptyset \text{ do} \]
 \[\text{Pick some } n \text{ from work;} \]
 \[\text{work} \leftarrow \text{work} \setminus \{n\}; \]
 \[\text{old} \leftarrow \text{OUT}[n]; \]
 \[\text{IN}[n] \leftarrow \text{IN}[n] \sqcup \biguplus_{p \rightarrow n \in E} \text{OUT}[p]; \]
 \[\text{OUT}[n] \leftarrow \text{post}_L(n, \text{IN}[n]); \]
 \[\text{if old} \neq \text{OUT}[n] \text{ then} \]
 \[\text{work} \leftarrow \text{work} \cup \text{succ}(n) \]
\[\text{return } \text{IN}, \text{OUT} \]

When algorithm terminates, all constraints are satisfied. Invariants:

- \[\text{IN}[s] = \top \]
- For any \(n \in N \), if \(\text{post}_L(n, \text{IN}[n]) \not\subseteq \text{OUT}[n] \), we have \(n \in \text{work} \)
- For any \(p \rightarrow n \in E \) with \(\text{OUT}[p] \not\subseteq \text{IN}(n) \), we have \(n \in \text{work} \)
Optimality

Algorithm computes *least* solution.

- **Invariant:** $\text{IN} \subseteq^* \overline{\text{IN}}$ and $\text{OUT} \subseteq^* \overline{\text{OUT}}$, where
 - $\overline{\text{IN/OUT}}$ denotes any solution to the constraint system
 - \subseteq^* is pointwise order on function space $N \to \mathcal{L}$

- **Argument:** let IN_i/OUT_i be IN/OUT at iteration i; n_i be workset item
 - $\text{IN}_{i+1}[n_i] = \text{IN}_i[n_i] \cup \bigcup_{p \rightarrow n_i \in E} \text{OUT}_i[p] \subseteq \text{IN}_i[n_i] \cup \bigcup_{p \rightarrow n_i \in E} \text{OUT}[p] \subseteq \overline{\text{IN}}[n_i]$
 - $\text{OUT}_{i+1}[n_i] = \text{post}_\mathcal{L}(n_i, \text{IN}_{i+1}[n_i]) \subseteq \text{post}_\mathcal{L}(n_i, \overline{\text{IN}}[n_i]) \subseteq \overline{\text{OUT}}[n_i]$
Termination

- Why does this algorithm terminate?
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- Ascending chain condition is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots$$

eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \geq i$.

Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence
 \[
 x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots
 \]
eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \geq i$.
- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. *(available expressions)*
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

 $$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq ...$$

 eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \geq i$.
- Fact: X is finite \Rightarrow $(2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (**available expressions**)
- Fact: X is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. \Rightarrow $(X \rightarrow \mathcal{L}, \sqsubseteq^*)$ satisfies a.c.c. (**constant propagation**)
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- Ascending chain condition is sufficient.
 - A partial order \(\sqsubseteq \) satisfies the ascending chain condition if any infinite ascending sequence
 \[
 x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots
 \]
 eventually stabilizes: for some \(i \), we have \(x_j = x_i \) for all \(j \geq i \).
 - Fact: \(X \) is finite \(\Rightarrow (2^X, \subseteq) \) and \((2^X, \supseteq) \) satisfy a.c.c. (*available expressions*)
 - Fact: \(X \) is finite and \((\mathcal{L}, \sqsubseteq)\) satisfies a.c.c. \(\Rightarrow (X \rightarrow \mathcal{L}, \sqsubseteq^*) \) satisfies a.c.c. (*constant propagation*)
- Termination argument:
 - If \((\mathcal{L}, \sqsubseteq)\) satisfies a.c.c., so does the space of annotations \((N \rightarrow \mathcal{L}, \sqsubseteq^*)\)
 - \(\text{OUT}_0 \sqsubseteq^* \text{OUT}_1 \sqsubseteq^* \ldots \), where \(\text{OUT}_i \) is the \(\text{OUT} \) annotation at iteration \(i \)
 - This sequence eventually stabilizes \(\Rightarrow \) algorithm terminates
Local vs. Global constraints

- We had two specifications for available expressions
 - **Global**: e available at entry of n iff for every path from s to n in G:
 1. the expression e is evaluated along the path
 2. after the *last* evaluation of e along the path, no variables in e are overwritten
 - **Local**: ae is the *smallest* function such that
 - $ae(s) = \emptyset$
 - For each $p \rightarrow n \in E$, $\text{post}_{ae}(p, ae(p)) \supseteq ae(n)$

- *Why are these specifications the same?*
Coincidence

- Let \((\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)\) be an abstract domain and let \(\text{post}_\mathcal{L}\) be a transfer function.
- “Global specification” is formulated as join over paths:
 \[
 \text{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_\mathcal{L}(\pi, \top)
 \]

 \(\text{post}_\mathcal{L}\) is extended to paths by taking
 \[
 \text{post}_\mathcal{L}(n_1n_2...n_k, \top) = \text{post}_\mathcal{L}(n_{k-1}, ..., \text{post}_\mathcal{L}(n_1, \top))
 \]

- Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain \((\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)\) and \textit{distributive} transfer function \(\text{post}_\mathcal{L}\), and let \(\text{IN/OUT}\) be least solution to
 1. \(\text{IN}[s] = \top\)
 2. For all \(n \in N\), \(\text{post}_\mathcal{L}(n, \text{IN}[n]) \sqsubseteq \text{OUT}[n]\)
 3. For all \(p \rightarrow n \in E\), \(\text{OUT}[p] \sqsubseteq \text{IN}(n)\)

Then for all \(n\), \(\text{JOP}[n] = \text{IN}[n]\).
Coincidence

- Let \((\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)\) be an abstract domain and let \(\text{post}_\mathcal{L}\) be a transfer function.
 - “Global specification” is formulated as join over paths:
 \[
 \text{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_\mathcal{L}(\pi, \top)
 \]
 - \(\text{post}_\mathcal{L}\) is extended to paths by taking
 \[
 \text{post}_\mathcal{L}(n_1 n_2 \ldots n_k, \top) = \text{post}_\mathcal{L}(n_{k-1}, \ldots, \text{post}_\mathcal{L}(n_1, \top))
 \]
 - Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain \((\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)\) and distributive transfer function \(\text{post}_\mathcal{L}\), and let \(\text{IN}/\text{OUT}\) be least solution to
 1. \(\text{IN}[s] = \top\)
 2. For all \(n \in N, \text{post}_\mathcal{L}(n, \text{IN}[n]) \sqsubseteq \text{OUT}[n]\)
 3. For all \(p \rightarrow n \in E, \text{OUT}[p] \sqsubseteq \text{IN}(n)\)
 Then for all \(n, \text{JOP}[n] = \text{IN}[n]\).
 - \(\text{post}_\mathcal{L}\) is distributive if for all \(x, y \in \mathcal{L}\),
 \[
 \text{post}_\mathcal{L}(n, x \sqcup y) = \text{post}_\mathcal{L}(n, x) \sqcup \text{post}_\mathcal{L}(n, y)
 \]
Available expressions

Recal transfer function $post_{AE}$ for available expressions:

$$post_{AE}(x = e, E) = \{ e' \in (E \cup \{e\}) : x \text{ not in } e' \}$$

$post_{AE}$ is distributive:

$$post_{AE}(x = e, E_1 \cap E_2) = \{ e' \in ((E_1 \cap E_2) \cup \{e\}) : x \text{ not in } e' \}$$
$$= \{ e' \in E_1 \cup \{e\} : x \text{ not in } e' \} \cap \{ e' \in (E_2 \cup \{e\}) : x \text{ not in } e' \}$$
$$= post_{AE}(x = e, E_1) \cap post_{AE}(x = e, E_2)$$
Constant propagation

Is $post_{cp}$ distributive?
Is post_{CP} distributive?

$$\text{post}_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) = \text{post}_{CP}(x := x + y, \{x \mapsto T, y \mapsto T\}) = \{x \mapsto T, y \mapsto T\}$$
Constant propagation

Is \(post_{CP} \) distributive?

\[
post_{CP}(x := x + y, \{ x \mapsto 0, y \mapsto 1 \} \sqcup \{ x \mapsto 1, y \mapsto 0 \}) = post_{CP}(x := x + y, \{ x \mapsto T, y \mapsto T \}) = \{ x \mapsto T, y \mapsto T \}
\]

\[
post_{CP}(x := x + y, \{ x \mapsto 0, y \mapsto 1 \}) = \{ x \mapsto 1, y \mapsto 1 \}
\]

\[
post_{CP}(x := x + y, \{ x \mapsto 1, y \mapsto 0 \}) = \{ x \mapsto 1, y \mapsto 0 \}
\]

\[
\{ x \mapsto 1, y \mapsto 1 \} \sqcup \{ x \mapsto 1, y \mapsto 0 \} = \{ x \mapsto 1, y \mapsto T \}
\]
Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are sets of facts
- For each basic block \(n \), associate a set of generated facts \(\text{gen}(n) \) and killed facts \(\text{kill}(n) \)
- Define \(\text{post}_L(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n) \).
Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are sets of facts
- For each basic block \(n \), associate a set of generated facts \(\text{gen}(n) \) and killed facts \(\text{kill}(n) \)
- Define \(\text{post}_L(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n) \).
- The order on sets of facts may be \(\subseteq \) or \(\supseteq \)
 - \(\subseteq \) used for *existential* analyses: a fact holds at \(n \) if it holds along some path to \(n \)
 - E.g., a variable is possibly-uninitialized at \(n \) if it is possibly-uninitialized along some path to \(n \).
 - \(\supseteq \) used for *universal* analyses: a fact holds at \(n \) if it holds along all paths to \(n \)
 - E.g., an expression is available at \(n \) if it is available along all paths to \(n \).
Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts $\text{gen}(n)$ and killed facts $\text{kill}(n)$
- Define $\text{post}_L(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for existential analyses: a fact holds at n if it holds along some path to n
 - E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n
 - \supseteq used for universal analyses: a fact holds at n if it holds along all paths to n
 - E.g., an expression is available at n if it is available along all paths to n
- In either case, post_L is monotone and distributive

\[
\text{post}_L(n, F \cup G) = ((F \cup G) \setminus \text{kill}(n)) \cup \text{gen}(n) \\
= ((F \setminus \text{kill}(n)) \cup (G \setminus \text{kill}(n))) \cup \text{gen}(n) \\
= ((F \setminus \text{kill}(n)) \cup \text{gen}(n)) \cup (((G \setminus \text{kill}(n))) \cup \text{gen}(n)) \\
= \text{post}_L(n, F) \cup \text{post}_L(n, G)
\]
Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.

If n uses an uninitialized variable, that could indicate undefined behavior.

- Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default

Possibly-unintialized variables as a dataflow analysis problem:

- Abstract domain 2^{Var} (each $V \in 2^{\text{Var}}$ represents a set of possibly-uninitialized vars)
 - Existentiaal \Rightarrow order is \subseteq, join is \cup, \top is Var, \bot is \emptyset
Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. `javac` does this by default
- Possibly-uninitialized variables as a dataflow analysis problem:
 - Abstract domain 2^Var (each $V \in 2^\text{Var}$ represents a set of possibly-uninitialized vars)
 - **Existential** \Rightarrow order is \subseteq, join is \cup, \top is Var, \bot is \emptyset
 - $\text{kill}(x := e) = \{x\}$
 - $\text{gen}(x := e) = \emptyset$
Reaching definitions analysis

• A definition is a pair \((n, x)\) consisting of a basic block \(n\), and a variable \(x\) such that \(n\) contains an assignment to \(x\).
• We say that a definition \((n, x)\) reaches a node \(m\) if there is a path from start to \(m\) such that the latest definition of \(x\) along the path is at \(n\).
• Reaching definitions as a data flow analysis:
A *definition* is a pair \((n, x)\) consisting of a basic block \(n\), and a variable \(x\) such that \(n\) contains an assignment to \(x\).

We say that a definition \((n, x)\) *reaches* a node \(m\) if there is a path from start to \(m\) such that the latest definition of \(x\) along the path is at \(n\).

Reaching definitions as a data flow analysis:

- **Abstract domain:** \(2^{N \times \text{Var}}\)
 - *Existential* ⇒ order is \(\subseteq\), join is \(\cup\), \(\top\) is \(N \times \text{Var}\), \(\bot\) is \(\emptyset\)
 - \(\text{kill}(n) = \{(m, x) : m \in N, (x := e) \text{ in } n\}\)
 - \(\text{gen}(n) = \{(n, x) : (x := e) \text{ in } n\}\)
In a compiler, program analysis is used to inform optimization
 - Outside of compilers: verification, testing, software understanding...
Dataflow analysis is a particular *family* of program analyses, which operates by solving a constraint system over an ordered set
 - Gen/kill analysis are a sub-family with nice properties
 - The basic idea of solving constraints systems over ordered sets appears in lots of different places!
 - Parsing – computation of first, follow, nullable
 - Networking – computing shortest paths
 - Automated planning – distance-to-goal estimation
 - ...