
COS320: Compiling Techniques

Zak Kincaid

April 9, 2020



Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,v,t,⊥,>)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least annotation IN,OUT such that

1 IN[s] = >
2 For all n ∈ N, postL(n, IN[n]) v OUT[n]
3 For all p → n ∈ E, OUT[p] v IN(n)

IN[s] = ⊤, OUT[s] = ⊥;
IN[n] = OUT[n] = ⊥ for all other nodes n;
work← N;
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]← IN[n] ⊔

⊔
p→n∈E

OUT[p];

OUT[n]← postL(n, IN[n]);
if old ̸= OUT[n] then

work← work ∪ succ(n)
return IN,OUT



Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,v,t,⊥,>)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least annotation IN,OUT such that

1 IN[s] = >
2 For all n ∈ N, postL(n, IN[n]) v OUT[n]
3 For all p → n ∈ E, OUT[p] v IN(n)

IN[s] = ⊤, OUT[s] = ⊥;
IN[n] = OUT[n] = ⊥ for all other nodes n;
work← N;
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]← IN[n] ⊔

⊔
p→n∈E

OUT[p];

OUT[n]← postL(n, IN[n]);
if old ̸= OUT[n] then

work← work ∪ succ(n)
return IN,OUT



(Partial) Correctness

IN[s] = ⊤, OUT[s] = ⊥;
IN[n] = OUT[n] = ⊥ for all other nodes n;
work← N;
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]← IN[n] ⊔

⊔
p→n∈E

OUT[p];

OUT[n]← postL(n, IN[n]);
if old ̸= OUT[n] then

work← work ∪ succ(n)
return IN,OUT

When algorithm terminates, all constraints are satisfied. Invariants:
• IN[s] = >
• For any n ∈ N, if postL(n, IN[n]) 6v OUT[n], we have n ∈ work
• For any p → n ∈ E with OUT[p] 6v IN(n), we have n ∈ work



Optimality

Algorithm computes least solution.
• Invariant: IN v∗ IN and OUT v∗ OUT, where

• IN/OUT denotes any solution to the constraint system
• v∗ is pointwise order on function space N → L

• Argument: let INi/OUTi be IN/OUT at iteration i; ni be workset item
• INi+1[ni] = INi[ni] t

⊔
p→ni∈E

OUTi[p] v INi[ni] t
⊔

p→ni∈E
OUT[p] v IN[ni]

• OUTi+1[ni] = postL(ni, INi+1[ni]) v postL(ni, IN[ni]) v OUT[ni]



Termination

• Why does this algorithm terminate?

• In general, it doesn’t
• Ascending chain condition is sufficient.

• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant propagation)

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates



Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant propagation)

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates



Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.

• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant propagation)

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates



Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)

• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant propagation)
• Termination argument:

• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates



Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant propagation)

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates



Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant propagation)

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates



Local vs. Global constraints

• We had two specifications for available expressions
• Global: e available at entry of n iff for every path from s to n in G:

1 the expression e is evaluated along the path
2 after the last evaluation of e along the path, no variables in e are overwritten

• Local: ae is the smallest function such that
• ae(s) = ∅
• For each p→ n ∈ E, postAE(p, ae(p)) ⊇ ae(n)

• Why are these specifications the same?



Coincidence
• Let (L,v,t,⊥,>) be an abstract domain and let postL be a transfer function.

• “Global specification” is formulated as join over paths:

JOP[n] =
⊔

π∈Path(s,n)

postL(π,>)

postL is extended to paths by taking

postL(n1n2...nk,>) = postL(nk−1, ..., postL(n1,>))

• Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain (L,v,t,⊥,>) and
distributive transfer function postL, and let IN/OUT be least solution to

1 IN[s] = >
2 For all n ∈ N, postL(n, IN[n]) v OUT[n]
3 For all p → n ∈ E, OUT[p] v IN(n)

Then for all n, JOP[n] = IN[n].

• postL is distributive if for all x, y ∈ L,

postL(n, x t y) = postL(n, x) t postL(n, y)



Coincidence
• Let (L,v,t,⊥,>) be an abstract domain and let postL be a transfer function.

• “Global specification” is formulated as join over paths:

JOP[n] =
⊔

π∈Path(s,n)

postL(π,>)

postL is extended to paths by taking

postL(n1n2...nk,>) = postL(nk−1, ..., postL(n1,>))

• Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain (L,v,t,⊥,>) and
distributive transfer function postL, and let IN/OUT be least solution to

1 IN[s] = >
2 For all n ∈ N, postL(n, IN[n]) v OUT[n]
3 For all p → n ∈ E, OUT[p] v IN(n)

Then for all n, JOP[n] = IN[n].
• postL is distributive if for all x, y ∈ L,

postL(n, x t y) = postL(n, x) t postL(n, y)



Available expressions

Recal transfer function postAE for available expressions:

postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}

postAE is distributive:

postAE(x = e,E1 ∩ E2) = {e′ ∈ ((E1 ∩ E2) ∪ {e}) : x not in e′}
= {e′ ∈ E1 ∪ {e}) : x not in e′} ∩ {e′ ∈ (E2 ∪ {e}) : x not in e′}
= postAE(x = e,E1) ∩ postAE(x = e,E2)



Constant propagation

Is postCP distributive?

postCP(x := x + y, {x 7→ 0, y 7→ 1} t {x 7→ 1, y 7→ 0}) = postCP(x := x + y, {x 7→ >, y 7→ >})
= {x 7→ >, y 7→ >}

postCP(x := x + y, {x 7→ 0, y 7→ 1}) = {x 7→ 1, y 7→ 1}
postCP(x := x + y, {x 7→ 1, y 7→ 0}) = {x 7→ 1, y 7→ 0}
{x 7→ 1, y 7→ 1} t {x 7→ 1, y 7→ 0} = {x 7→ 1, y 7→ >}



Constant propagation

Is postCP distributive?

postCP(x := x + y, {x 7→ 0, y 7→ 1} t {x 7→ 1, y 7→ 0}) = postCP(x := x + y, {x 7→ >, y 7→ >})
= {x 7→ >, y 7→ >}

postCP(x := x + y, {x 7→ 0, y 7→ 1}) = {x 7→ 1, y 7→ 1}
postCP(x := x + y, {x 7→ 1, y 7→ 0}) = {x 7→ 1, y 7→ 0}
{x 7→ 1, y 7→ 1} t {x 7→ 1, y 7→ 0} = {x 7→ 1, y 7→ >}



Constant propagation

Is postCP distributive?

postCP(x := x + y, {x 7→ 0, y 7→ 1} t {x 7→ 1, y 7→ 0}) = postCP(x := x + y, {x 7→ >, y 7→ >})
= {x 7→ >, y 7→ >}

postCP(x := x + y, {x 7→ 0, y 7→ 1}) = {x 7→ 1, y 7→ 1}
postCP(x := x + y, {x 7→ 1, y 7→ 0}) = {x 7→ 1, y 7→ 0}
{x 7→ 1, y 7→ 1} t {x 7→ 1, y 7→ 0} = {x 7→ 1, y 7→ >}



Gen/kill analyses

• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n).

• The order on sets of facts may be ⊆ or ⊇
• ⊆ used for existential analyses: a fact holds at n if it holds along some path to n

• E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
• ⊇ used for universal analyses: a fact holds at n if it holds along all paths to n

• E.g., an expression is avaiable at n if it is available along all paths to n
• In either case, postL is monotone and distributive

postL(n,F ∪ G) = ((F ∪ G) \ kill(n)) ∪ gen(n)
= ((F \ kill(n)) ∪ (G \ kill(n))) ∪ gen(n)
= ((F \ kill(n)) ∪ gen(n)) ∪ (((G \ kill(n))) ∪ gen(n))
= postL(n,F) ∪ postL(n,G)



Gen/kill analyses

• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n).
• The order on sets of facts may be ⊆ or ⊇

• ⊆ used for existential analyses: a fact holds at n if it holds along some path to n
• E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.

• ⊇ used for universal analyses: a fact holds at n if it holds along all paths to n
• E.g., an expression is avaiable at n if it is available along all paths to n

• In either case, postL is monotone and distributive

postL(n,F ∪ G) = ((F ∪ G) \ kill(n)) ∪ gen(n)
= ((F \ kill(n)) ∪ (G \ kill(n))) ∪ gen(n)
= ((F \ kill(n)) ∪ gen(n)) ∪ (((G \ kill(n))) ∪ gen(n))
= postL(n,F) ∪ postL(n,G)



Gen/kill analyses

• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n).
• The order on sets of facts may be ⊆ or ⊇

• ⊆ used for existential analyses: a fact holds at n if it holds along some path to n
• E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.

• ⊇ used for universal analyses: a fact holds at n if it holds along all paths to n
• E.g., an expression is avaiable at n if it is available along all paths to n

• In either case, postL is monotone and distributive

postL(n,F ∪ G) = ((F ∪ G) \ kill(n)) ∪ gen(n)
= ((F \ kill(n)) ∪ (G \ kill(n))) ∪ gen(n)
= ((F \ kill(n)) ∪ gen(n)) ∪ (((G \ kill(n))) ∪ gen(n))
= postL(n,F) ∪ postL(n,G)



Possibly-uninitialized variables analysis

• A variable x is possibly-uninitialized at a location n if there is some path from start to n
along which x is never written to.

• If n uses an uninitialized variable, that could indicate undefined behavior
• Can catch these errors at compile time using possibly-uninitialized variable analysis
• E.g. javac does this by default

• Possibly-unintialized variables as a dataflow analysis problem:

• Abstract domain 2Var (each V ∈ 2Var represents a set of possibly-uninitialized vars)
• Existential⇒ order is⊆, join is ∪,⊤ is Var,⊥ is ∅

• kill(x := e) = {x}
• gen(x := e) = ∅



Possibly-uninitialized variables analysis

• A variable x is possibly-uninitialized at a location n if there is some path from start to n
along which x is never written to.

• If n uses an uninitialized variable, that could indicate undefined behavior
• Can catch these errors at compile time using possibly-uninitialized variable analysis
• E.g. javac does this by default

• Possibly-unintialized variables as a dataflow analysis problem:
• Abstract domain 2Var (each V ∈ 2Var represents a set of possibly-uninitialized vars)

• Existential⇒ order is⊆, join is ∪,⊤ is Var,⊥ is ∅

• kill(x := e) = {x}
• gen(x := e) = ∅



Possibly-uninitialized variables analysis

• A variable x is possibly-uninitialized at a location n if there is some path from start to n
along which x is never written to.

• If n uses an uninitialized variable, that could indicate undefined behavior
• Can catch these errors at compile time using possibly-uninitialized variable analysis
• E.g. javac does this by default

• Possibly-unintialized variables as a dataflow analysis problem:
• Abstract domain 2Var (each V ∈ 2Var represents a set of possibly-uninitialized vars)

• Existential⇒ order is⊆, join is ∪,⊤ is Var,⊥ is ∅
• kill(x := e) = {x}
• gen(x := e) = ∅



Reaching definitions analysis

• A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n
contains an assignment to x.

• We say that a definitoin (n, x) reaches a node m if there is a path from start to m such that
the latest definition of x along the path is at n

• Reaching definitions as a data flow analysis:

• Abstract domain: 2N×Var

• Existential⇒ order is⊆, join is ∪,⊤ is N× Var,⊥ is ∅
• kill(n) = {(m, x) : m ∈ N, (x := e) in n}
• gen(n) = {(n, x) : (x := e) in n}



Reaching definitions analysis

• A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n
contains an assignment to x.

• We say that a definitoin (n, x) reaches a node m if there is a path from start to m such that
the latest definition of x along the path is at n

• Reaching definitions as a data flow analysis:
• Abstract domain: 2N×Var

• Existential⇒ order is⊆, join is ∪,⊤ is N× Var,⊥ is ∅
• kill(n) = {(m, x) : m ∈ N, (x := e) in n}
• gen(n) = {(n, x) : (x := e) in n}



Wrap-up

• In a compiler, program analysis is used to inform optimization
• Outside of compilers: verification, testing, software understanding...

• Dataflow analysis is a particular family of progam analyses, which operates by solving a
constraint system over an ordered set

• Gen/kill analysis are a sub-family with nice properties
• The basic idea of solving constraints systems over ordered sets appears in lotss of different

places!
• Parsing – computation of first, follow, nullable
• Networking – computing shortest parths
• Automated planning – distance-to-goal estimation
• ...


