
COS320: Compiling Techniques

Zak Kincaid

April 7, 2020

Data flow analysis

Logistics

• Midterm feedback is on gradscope.com
• Tigar Cyr wrote a syntax highlighting extension for Oat
https://marketplace.visualstudio.com/items?itemName=tlcyr4.oat

Recall: constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Say that the assignment IN,OUT is conservative if
1 IN[s] assigns each variable >
2 For each node bb ∈ N,

OUT[bb] w post(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] w OUT[src]

i n t sum2(i n t n) {
i n t sum = 0;
i n t step = 2;
whi le (n > 0) {

sum = sum + n;
n = n - step;

}
r e t u r n sum;

}

sum = 0
step = 2

br loop

bgz sum, body, exit

sum = sum + n
n = n - step

br loop

return tmp9

T
F

High-level constant propagation algorithm

• Initialize IN[s] to the constant environment that sends every variable to > and OUT[s] to
the constant environment that sends every variable to ⊥.

• Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to
⊥ for every other basic block

• Choose a constraint that is not satisfied by IN,OUT
• If there is basic block bb with OUT[bb] 6w post(bb, IN[bb]), then set

OUT[bb] := post(bb, IN[bb])

• If there is an edge src → dst ∈ E with IN[dst] 6w OUT[src], then set

IN[dst] := IN[dst] t OUT[src]

• Terminate when all constraints are satisfied.

High-level constant propagation algorithm

• Initialize IN[s] to the constant environment that sends every variable to > and OUT[s] to
the constant environment that sends every variable to ⊥.

• Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to
⊥ for every other basic block

• Choose a constraint that is not satisfied by IN,OUT
• If there is basic block bb with OUT[bb] 6w post(bb, IN[bb]), then set

OUT[bb] := post(bb, IN[bb])

• If there is an edge src → dst ∈ E with IN[dst] 6w OUT[src], then set

IN[dst] := IN[dst] t OUT[src]

• Terminate when all constraints are satisfied.

Some additional vocabulary:
• Define pred(n) = {m ∈ N : m → n ∈ E} (control flow predecessors)
• Define succ(n) = {m ∈ N : n → m ∈ E} (control flow successors)
• Path = sequence of nodes n1, ...,nk such that for each i, there is an edge from

ni → ni+1 ∈ E

Worklist algorithm

Input : Control flow graph (N,E, s), with variables x1, ..., xn
Output: Least conservative assignment of constant environments

IN[s] = {x1 7→ >, ..., xn 7→ >};
OUT[s] = {x1 7→ ⊥, ..., xn 7→ ⊥};
IN[n] = OUT[n] = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes n;
work← N ; /* Set of nodes that may violate spec */
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← post(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Worklist algorithm

Input : Control flow graph (N,E, s), with variables x1, ..., xn
Output: Least conservative assignment of constant environments
IN[s] = {x1 7→ >, ..., xn 7→ >};
OUT[s] = {x1 7→ ⊥, ..., xn 7→ ⊥};
IN[n] = OUT[n] = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes n;
work← N ; /* Set of nodes that may violate spec */

while work 6= ∅ do
Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← post(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Worklist algorithm

Input : Control flow graph (N,E, s), with variables x1, ..., xn
Output: Least conservative assignment of constant environments
IN[s] = {x1 7→ >, ..., xn 7→ >};
OUT[s] = {x1 7→ ⊥, ..., xn 7→ ⊥};
IN[n] = OUT[n] = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes n;
work← N ; /* Set of nodes that may violate spec */
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;

old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← post(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Worklist algorithm

Input : Control flow graph (N,E, s), with variables x1, ..., xn
Output: Least conservative assignment of constant environments
IN[s] = {x1 7→ >, ..., xn 7→ >};
OUT[s] = {x1 7→ ⊥, ..., xn 7→ ⊥};
IN[n] = OUT[n] = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes n;
work← N ; /* Set of nodes that may violate spec */
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← post(n, IN[n]);

if old 6= OUT(n) then
work← work ∪ succ(n)

return IN,OUT

Worklist algorithm

Input : Control flow graph (N,E, s), with variables x1, ..., xn
Output: Least conservative assignment of constant environments
IN[s] = {x1 7→ >, ..., xn 7→ >};
OUT[s] = {x1 7→ ⊥, ..., xn 7→ ⊥};
IN[n] = OUT[n] = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes n;
work← N ; /* Set of nodes that may violate spec */
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← post(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Common subexpression elimination
• Common subexpression elimination searches for expressions that

• appear at multiple points in a program
• evaluate to the same value at those points

and (possibly) save the cost of re-evaluation by storing that value.

void print (long *m, long n) {
long i,j;
f o r (i = 0; i < n*n; i += n) {

f o r (j = 0; j < n; j += 1) {
printf(‘‘ %ld’’, *(m + i + j));

}
i f (i + n < n*n) {

printf(‘‘\n’’);
}

}
}

→

void print (long *m, long n) {
long i,j;
long n_times_n = n*n;
f o r (i = 0; i < n_times_n;) {

f o r (j = 0; j < n; j += 1) {
printf(‘‘ %ld’’, *(m + i + j));

}
long i_plus_n = i+n;
i f (i_plus_n < n_times_n) {

printf(‘‘\n’’);
}
i = i_plus_n;

}
}

Available expressions

• An expression in our simple imperative language has one of the following forms:
• add <opn> <opn>
• mul <opn> <opn>

• Fix control flow graph G = (N,E, s)
• An expression e is available at basic block n ∈ N if for every path from s to n in G:

1 the expression e is evaluated along the path
2 after the last evaluation of e along the path, no variables in e are overwritten

• Idea: if expression e is available at node n, then can eliminate redundant computations of
e within n

i = 0

br loop

t1 = n*n
t2 = -1*t1
t3 = i+t2

blz t3, body, exit

t4 = i+n
t5 = n*n
t6 = -1*t5
t7 = t4+t6

br t7, line, merge

i = i+n

br loop

line = line+1

br merge

return

T

F

F

T

Propagating available expressions
• Given a set of expressions E and an instruction x = e

Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

• How do we combine information from multiple predecessors?

t1 = n*n
t2 = m+m

br tgt

n = m+m
t2 = n+1

br tgt

...

{n ∗ n,m + m} {m + m,n + 1}

{m + m}

Propagating available expressions
• Given a set of expressions E and an instruction x = e

Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}

• How do we propagate available expressions through a basic block?
• Block takes the form instr1, ..., instrn, term.

take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))
• How do we combine information from multiple predecessors?

t1 = n*n
t2 = m+m

br tgt

n = m+m
t2 = n+1

br tgt

...

{n ∗ n,m + m} {m + m,n + 1}

{m + m}

Propagating available expressions
• Given a set of expressions E and an instruction x = e

Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

• How do we combine information from multiple predecessors?

t1 = n*n
t2 = m+m

br tgt

n = m+m
t2 = n+1

br tgt

...

{n ∗ n,m + m} {m + m,n + 1}

{m + m}

Propagating available expressions
• Given a set of expressions E and an instruction x = e

Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

• How do we combine information from multiple predecessors?

t1 = n*n
t2 = m+m

br tgt

n = m+m
t2 = n+1

br tgt

...

{n ∗ n,m + m} {m + m,n + 1}

{m + m}

Propagating available expressions
• Given a set of expressions E and an instruction x = e

Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

• How do we combine information from multiple predecessors?

t1 = n*n
t2 = m+m

br tgt

n = m+m
t2 = n+1

br tgt

...

{n ∗ n,m + m} {m + m,n + 1}

{m + m}

Propagating available expressions
• Given a set of expressions E and an instruction x = e

Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ (E ∪ {e}) : x not in e′}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

• How do we combine information from multiple predecessors? Intersection

t1 = n*n
t2 = m+m

br tgt

n = m+m
t2 = n+1

br tgt

...

{n ∗ n,m + m} {m + m,n + 1}

{m + m}

Available expressions as a constraint system

• Let G = (N,E, s) be a control flow graph.
• For each basic block bb ∈ N, associate two sets of expressions, IN[bb] and OUT[bb]

• IN[bb] is the set of expressions available at the entry of bb
• OUT[bb] is the set of expressions available at the exit of bb

• Say that the assignment IN,OUT is conservative if
1 IN[s] = ∅
2 For each node bb ∈ N,

OUT[bb] ⊆ postAE(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊆ OUT[src]

• Fact: if IN,OUT is a conservative assignment, then:
• If e ∈ IN[bb], then e is available at entry of bb
• Similarly for OUT

Available expressions as a constraint system

• Let G = (N,E, s) be a control flow graph.
• For each basic block bb ∈ N, associate two sets of expressions, IN[bb] and OUT[bb]

• IN[bb] is the set of expressions available at the entry of bb
• OUT[bb] is the set of expressions available at the exit of bb

• Say that the assignment IN,OUT is conservative if
1 IN[s] = ∅
2 For each node bb ∈ N,

OUT[bb] ⊆ postAE(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊆ OUT[src]

• Fact: if IN,OUT is a conservative assignment, then:
• If e ∈ IN[bb], then e is available at entry of bb
• Similarly for OUT

Available expressions as a constraint system

• Let G = (N,E, s) be a control flow graph.
• For each basic block bb ∈ N, associate two sets of expressions, IN[bb] and OUT[bb]

• IN[bb] is the set of expressions available at the entry of bb
• OUT[bb] is the set of expressions available at the exit of bb

• Say that the assignment IN,OUT is conservative if
1 IN[s] = ∅
2 For each node bb ∈ N,

OUT[bb] ⊆ postAE(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊆ OUT[src]

• Fact: if IN,OUT is a conservative assignment, then:
• If e ∈ IN[bb], then e is available at entry of bb
• Similarly for OUT

Worklist algorithm

Input : Control flow graph (N,E, s), with expressions U
Output: Least conservative assignment of available expressions
IN[s] = ∅;
OUT[s] = U;
IN[n] = OUT[n] = U for all other nodes n;
work← N ; /* Set of nodes that may violate spec */
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

∩
p→n∈E

OUT[p];

OUT[n]← postAE(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Constant propagation

Want smallest assignment IN,OUT such that

• IN[s] = {x1 7→ >, ..., xn 7→ >}
• For each n ∈ N,

OUT[n] w postCP(n, IN[n])
• For each p → n ∈ E, OUT[p] v IN[n]

Available expressions

Want greatest assignment IN,OUT such that

• IN[s] = ∅
• For each n ∈ N,

OUT[n] ⊆ postAE(n, IN[n])
• For each p → n ∈ E, OUT[p] ⊇ IN[n]

• Commonality: consant propagation and available expressions are characterized by
optimal solutions to a system of local constraints

• “Local”: defined in terms of edges; contrast with “global”, which depends on the structure of
the whole graph (e.g., paths)

• The algorithms for constant propagation & available expressions are essentially the same

Constant propagation

Want smallest assignment IN,OUT such that

• IN[s] = {x1 7→ >, ..., xn 7→ >}
• For each n ∈ N,

OUT[n] w postCP(n, IN[n])
• For each p → n ∈ E, OUT[p] v IN[n]

Available expressions

Want greatest assignment IN,OUT such that

• IN[s] = ∅
• For each n ∈ N,

OUT[n] ⊆ postAE(n, IN[n])
• For each p → n ∈ E, OUT[p] ⊇ IN[n]

• Commonality: consant propagation and available expressions are characterized by
optimal solutions to a system of local constraints

• “Local”: defined in terms of edges; contrast with “global”, which depends on the structure of
the whole graph (e.g., paths)

• The algorithms for constant propagation & available expressions are essentially the same

Dataflow analysis

• Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses

• Formulate problem as a system of constraints
• Solve the constraints iteratively (using some variation of the workset algorithm)
• What now:

• General theory & algorithms
• Conditions under which the approach works
• Guarantees about the solution

• Not covered: abstract interpretation – a general theory for relating program analysis to
program semantics

• What does it mean for a constraint system to be correct?
• How do we prove it?

A (forward) dataflow analysis consists of:
• An abstract domain L

• Defines the space of program “properties” that we are interested in
• An abstract transformer postL

• Determines how each basic block transforms properties
• i.e., if property p holds before n, then postL(n, p) is a property that holds after n

Abstract domains

An abstract domain is a set L equipped with:
• A partial order v

• x v y means that x represents more precise information about the program than y1

• A least upper bound (“join”) operator, t
1 x v x t y
2 y v x t y
3 x t y v z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• ⊥ v x for all x
• ⊥ t x = x t ⊥ = x for all x

• A greatest element (“top”), >
• x v > for all x
• > t x = x t > = > for all x

1The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set L equipped with:
• A partial order v

• x v y means that x represents more precise information about the program than y1

• A least upper bound (“join”) operator, t
1 x v x t y
2 y v x t y
3 x t y v z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• ⊥ v x for all x
• ⊥ t x = x t ⊥ = x for all x

• A greatest element (“top”), >
• x v > for all x
• > t x = x t > = > for all x

1The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set L equipped with:
• A partial order v

• x v y means that x represents more precise information about the program than y1

• A least upper bound (“join”) operator, t
1 x v x t y
2 y v x t y
3 x t y v z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• ⊥ v x for all x
• ⊥ t x = x t ⊥ = x for all x

• A greatest element (“top”), >
• x v > for all x
• > t x = x t > = > for all x

1The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set L equipped with:
• A partial order v

• x v y means that x represents more precise information about the program than y1

• A least upper bound (“join”) operator, t
1 x v x t y
2 y v x t y
3 x t y v z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• ⊥ v x for all x
• ⊥ t x = x t ⊥ = x for all x

• A greatest element (“top”), >
• x v > for all x
• > t x = x t > = > for all x

1The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

• Often convenient to depict partial order as Haase diagram
• Draw a line from x to y if x v y and there is no z with x v z v y (y covers x)
• x v y iff there is a upwards path from x to y

>

0-1-2 1 2

⊥

· · ·· · ·

Function spaces

• Constant environments are functions mapping Variables → Z ∪ {⊥,>}

• Environments inherit pointwise ordering v∗ from the ordering v on Z ∪ {⊥,>}:
f v∗ g iff f(x) v g(x) for all x ∈ Variables

• There is a least and greatest environment

⊥∗ = (fun x → ⊥)

>∗ = (fun x → >)

• Environments have least upper bounds

f t∗ g = (fun (x)->f(x) t g(x))

• This holds more generally: If L is an abstract domain and X is any set, the set of functions
X → L is an abstract domain under the pointwise ordering.

Function spaces

• Constant environments are functions mapping Variables → Z ∪ {⊥,>}
• Environments inherit pointwise ordering v∗ from the ordering v on Z ∪ {⊥,>}:

f v∗ g iff f(x) v g(x) for all x ∈ Variables
• There is a least and greatest environment

⊥∗ = (fun x → ⊥)

>∗ = (fun x → >)

• Environments have least upper bounds

f t∗ g = (fun (x)->f(x) t g(x))

• This holds more generally: If L is an abstract domain and X is any set, the set of functions
X → L is an abstract domain under the pointwise ordering.

Function spaces

• Constant environments are functions mapping Variables → Z ∪ {⊥,>}
• Environments inherit pointwise ordering v∗ from the ordering v on Z ∪ {⊥,>}:

f v∗ g iff f(x) v g(x) for all x ∈ Variables
• There is a least and greatest environment

⊥∗ = (fun x → ⊥)

>∗ = (fun x → >)

• Environments have least upper bounds

f t∗ g = (fun (x)->f(x) t g(x))

• This holds more generally: If L is an abstract domain and X is any set, the set of functions
X → L is an abstract domain under the pointwise ordering.

{x 7→ >, y 7→ >}

{x 7→ 0, y 7→ >} {x 7→ >, y 7→ 0} {x 7→ 1, y 7→ >}{x 7→ >, y 7→ 1}

{x 7→ 0, y 7→ 0} {x 7→ 0, y 7→ 1} {x 7→ 1, y 7→ 1}{x 7→ 1, y 7→ 0}

{x 7→ ⊥, y 7→ ⊥}

Powersets

For any set X, the set 2X of subsets of X is an abstract domain:
• Order ⊆, least element ∅, greatest element X, join ∪
• Order ⊇, least element X, greatest element ∅, join ∩ (Available Expressions)

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Transfer functions

A transfer function postL : Basic Block × L → L maps each basic block & “pre-state” value to a
“post-state” value
• Technical requirement: postL is monotone

x v y ⇒ postL(n, x) v postL(n, y)

(“more information in ⇒ more information out”)
• Note: monotonicity is not the same as x v f(x) for all x

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,v,t,⊥,>)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least annotation IN,OUT such that

1 IN(s) = >
2 For all n ∈ N, postL(n, IN[n]) v OUT[n]
3 For all p → n ∈ E, OUT[p] v IN(n)

IN[s] = >, OUT[s] = ⊥;
IN[n] = OUT[n] = ⊥

for all other nodes n;
work← N;
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← postL(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,v,t,⊥,>)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least annotation IN,OUT such that

1 IN(s) = >
2 For all n ∈ N, postL(n, IN[n]) v OUT[n]
3 For all p → n ∈ E, OUT[p] v IN(n)

IN[s] = >, OUT[s] = ⊥;
IN[n] = OUT[n] = ⊥

for all other nodes n;
work← N;
while work 6= ∅ do

Pick some n from work;
work← work \ {n} ;
old← OUT[n];
IN[n]←

⊔
p→n∈E

OUT[p];

OUT[n]← postL(n, IN[n]);
if old 6= OUT(n) then

work← work ∪ succ(n)
return IN,OUT

Correctness

• When algorithm terminates, all constraints are satisfied. Invariants:
• IN[n] = >
• For any n ∈ N, postL(n, IN[n]) = OUT[n]
• For any p → n ∈ E with OUT[p] v IN(n), we have n ∈ work

• Algorithm computes least solution.
• Invariant: IN v∗ IN and OUT v∗ OUT, where

• IN/OUT denotes any solution to the constraint system
• v∗ is pointwise order on function space N→ L

• Argument: let INi/OUTi be IN/OUT at iteration i; ni be workset item
• INi+1[ni] =

⊔
p→ni∈E

OUTi[p] v
⊔

p→ni∈E
OUT[p] v IN[ni]

• OUTi+1[ni] = postL(ni, INi+1[ni]) v postL(ni, IN[ni]) v OUT[ni]

Correctness

• When algorithm terminates, all constraints are satisfied. Invariants:
• IN[n] = >
• For any n ∈ N, postL(n, IN[n]) = OUT[n]
• For any p → n ∈ E with OUT[p] v IN(n), we have n ∈ work

• Algorithm computes least solution.
• Invariant: IN v∗ IN and OUT v∗ OUT, where

• IN/OUT denotes any solution to the constraint system
• v∗ is pointwise order on function space N→ L

• Argument: let INi/OUTi be IN/OUT at iteration i; ni be workset item
• INi+1[ni] =

⊔
p→ni∈E

OUTi[p] v
⊔

p→ni∈E
OUT[p] v IN[ni]

• OUTi+1[ni] = postL(ni, INi+1[ni]) v postL(ni, IN[ni]) v OUT[ni]

Termination

• Why does this algorithm terminate?

• In general, it doesn’t
• Ascending chain condition is sufficient.

• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant

propagation)ermina
• Termination argument:

• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates

Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant

propagation)ermina
• Termination argument:

• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates

Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.

• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant

propagation)ermina
• Termination argument:

• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates

Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)

• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant
propagation)ermina

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates

Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant

propagation)ermina

• Termination argument:
• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates

Termination

• Why does this algorithm terminate?
• In general, it doesn’t

• Ascending chain condition is sufficient.
• A partial order v satisfies the ascending chain condition if any infinite ascending sequence

x1 v x2 v x3 v ...

eventually stabilizes: for some i, we have xj = xi for all j ≥ i.
• Fact: X is finite ⇒ (2X,⊆) and (2X,⊇) satisfy a.c.c. (available expressions)
• Fact: X is finite and (L,v) satisfies a.c.c. ⇒ (X → L,v∗) satisfies a.c.c. (constant

propagation)ermina
• Termination argument:

• If (L,v) satisfies a.c.c., so does the space of annotations (N → L,v∗)
• OUT0 v∗ OUT1 v∗ ..., where OUTi is the OUT annotation at iteration i
• This sequence eventually stabilizes ⇒ algorithm terminates

