COS320: Compiling Techniques

Zak Kincaid

April 2, 2020
Optimization
Compiler phases (simplified)

Source text

→ Lexing

Token stream

→ Parsing

Abstract syntax tree

→ Translation

Intermediate representation

→ Optimization

→ Code generation

Assembly
Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
 - improve performance (time, space, power)
 - not change the high-level (defined) behavior of the program
- Each optimization pass does something small and simple.
 - Combination of passes can yield sophisticated transformations
Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
 - improve performance (time, space, power)
 - not change the high-level (defined) behavior of the program

- Each optimization pass does something small and simple.
 - Combination of passes can yield sophisticated transformations

- Optimization simplifies compiler writing
 - More modular: can translate to IR in a simple-but-inefficient way, then optimize

- Optimization simplifies programming
 - Programmer can spend less time thinking about low-level performance issues
 - More portable: compiler can take advantage of the characteristics of a particular machine
Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones

\[e \times 1 \rightarrow e \]

\[0 + e \rightarrow e \]

\[2 \times 3 \rightarrow 6 \]

\[-(\neg e) \rightarrow e \]

\[e \times 4 \rightarrow e \ll 2 \]

...
Loop unrolling

Idea: avoid branching by trading space for time.

```c
long array_sum (long *a, long n) {
    long i;
    long sum = 0;
    for (i = 0; i < n % 4; i++) {
        sum += *(a + i);
    }
    for (; i < n; i += 4) {
        sum += *(a + i);
        sum += *(a + i + 1);
        sum += *(a + i + 2);
        sum += *(a + i + 3);
    }
    return sum;
}
```

→

```c
long array_sum (long *a, long n) {
    long i;
    long sum = 0;
    for (i = 0; i < n % 4; i++) {
        sum += *(a + i);
    }
    for (; i < n; i += 4) {
        sum += *(a + i);
        sum += *(a + i + 1);
        sum += *(a + i + 2);
        sum += *(a + i + 3);
    }
    return sum;
}
```
Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

```c
long trace (long *m, long n) {
    long i;
    long result = 0;
    for (i = 0; i < n; i++) {
        result += *(m + i*n + i);
    }
    return result;
}
```

```c
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    for (i = 0; i < n; i++) {
        result += *next;
        next += n + i + 1;
    }
    return result;
}
```
Optimization and Analysis

- **Program analysis**: conservatively approximate the run-time behavior of a program at compile time.
 - Type inference: find the type of value each expression will evaluate to at run time. *Conservative* in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
 - Constant propagation: if a variable only holds on value at run time, find that value. *Conservative* in the sense that analysis may fail to find constant values for variables that have them.
Optimization and Analysis

- **Program analysis**: conservatively approximate the run-time behavior of a program at compile time.
 - Type inference: find the type of value each expression will evaluate to at run time. *Conservative* in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
 - Constant propagation: if a variable only holds on value at run time, find that value. *Conservative* in the sense that analysis may fail to find constant values for variables that have them.
- **Optimization passes are typically informed by analysis**
 - Analysis lets us know which transformations are safe
 - Conservative analysis \implies never perform an unsafe optimization, but may miss some safe optimizations.
```c
int sum_upto(int n) {
    int sum = 0;
    while (n > 0) {
        sum += n;
        n--;
    }
    return sum;
}
```
Control flow graphs are one of the basic data structures used to represent programs in many program analyses.

Recall: A **control flow graph** (CFG) for a procedure \(P \) is a directed, rooted graph
\[G = (N, E, r) \]
where
- The nodes are basic blocks of \(P \)
- There is an edge \(n_i \rightarrow n_j \in E \) iff \(n_j \) may execute immediately after \(n_i \)
- There is a distinguished entry block \(r \) where the execution of the procedure begins
Simple imperative language

Suppose that we have the following language:

\[
\begin{align*}
<\text{instr}> & ::= <\text{var}> = \text{add}<\text{opn}>, <\text{opn}> \\
& \quad | <\text{var}> = \text{mul}<\text{opn}>, <\text{opn}> \\
& \quad | <\text{var}> = \text{opn} \\
<\text{opn}> & ::= <\text{int}> | <\text{var}> \\
<\text{block}> & ::= <\text{instr}><\text{block}> | <\text{term}> \\
<\text{term}> & ::= \text{blez}<\text{opn}>, <\text{label}>, <\text{label}> \\
<\text{program}> & ::= <\text{program}> <\text{label}> : <\text{block}> | <\text{block}>
\end{align*}
\]

Note: no uids, no SSA

- We'll take a look at how SSA affects program analysis later
Constant propagation

• The goal of constant propagation: determine at each instruction \(I \) a constant environment
 • A constant environment is a symbol table mapping each variable \(x \) to one of:
 • an integer \(n \) (indicating that \(x \)'s value is \(n \) whenever the program is at \(I \))
 • \(\top \) (indicating that \(x \) might take more than one value at \(I \))
 • \(\bot \) (indicating that \(x \) may take no values at run-time – \(I \) is unreachable)

• Motivation: can compute expressions at compile time to save on run time

\[
\begin{align*}
x &= \text{add } 1, 2 \\
y &= \text{mul } x, 11 \\
z &= \text{add } x, y
\end{align*}
\]
The goal of constant propagation: determine at each instruction I a constant environment

- A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

Motivation: can compute expressions at compile time to save on run time

$$\{x \mapsto T, y \mapsto T, z \mapsto T\}$$

- $x = \text{add} \ 1, \ 2$
- $y = \text{mul} \ x, \ 11$
- $z = \text{add} \ x, \ y$
Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
 • A constant environment is a symbol table mapping each variable x to one of:
 • an integer n (indicating that x’s value is n whenever the program is at I)
 • \top (indicating that x might take more than one value at I)
 • \bot (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can compute expressions at compile time to save on run time

\[
\begin{align*}
\{x \mapsto T, y \mapsto T, z \mapsto T\} \\
\{x \mapsto 3, y \mapsto T, z \mapsto T\}
\end{align*}
\]

\[
\begin{align*}
x &= \text{add} \ 1, \ 2 \\
y &= \text{mul} \ x, \ 11 \\
z &= \text{add} \ x, \ y
\end{align*}
\]
Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment $\langle I \rangle$
- A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

- Motivation: can compute expressions at compile time to save on run time

$$\{x \mapsto T, y \mapsto T, z \mapsto T\}$$

$$\{x \mapsto 3, y \mapsto T, z \mapsto T\}$$

$$\{x \mapsto 3, y \mapsto 33, z \mapsto T\}$$

$x = \text{add } 1, 2$

$y = \text{mul } x, 11$

$z = \text{add } x, y$
The goal of constant propagation: determine at each instruction I a constant environment

- A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

- Motivation: can compute expressions at compile time to save on run time

\[
\begin{align*}
\{x &\mapsto T, y \mapsto T, z \mapsto T\} \\
\{x &\mapsto 3, y \mapsto T, z \mapsto T\} &\quad x = 3 \\
\{x &\mapsto 3, y \mapsto 33, z \mapsto T\} &\quad y = \text{mul } x, 11 \\
&\quad z = \text{add } x, y
\end{align*}
\]
Constant propagation

- The goal of constant propagation: determine at each instruction I a *constant environment*
 - A *constant environment* is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x’s value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

- Motivation: can compute expressions at compile time to save on run time

\[
\begin{align*}
\{x &\mapsto T, y \mapsto T, z \mapsto T \} \\
\{x &\mapsto 3, y \mapsto T, z \mapsto T \} \\
\{x &\mapsto 3, y \mapsto 33, z \mapsto T \}
\end{align*}
\]

\[
\begin{align*}
x &= 3 \\
y &= 33 \\
z &= \text{add } x, y
\end{align*}
\]
Constant propagation

- The goal of constant propagation: determine at each instruction \(I \) a *constant environment*
 - A *constant environment* is a symbol table mapping each variable \(x \) to one of:
 - an integer \(n \) (indicating that \(x \)'s value is \(n \) whenever the program is at \(I \))
 - \(\top \) (indicating that \(x \) might take more than one value at \(I \))
 - \(\bot \) (indicating that \(x \) may take no values at run-time – \(I \) is unreachable)
- Motivation: can compute expressions at compile time to save on run time

\[
\begin{align*}
\{x \mapsto \top, y \mapsto \top, z \mapsto \top\} \\
\{x \mapsto 3, y \mapsto \top, z \mapsto \top\} \\
\{x \mapsto 3, y \mapsto 33, z \mapsto \top\}
\end{align*}
\]

\[
\begin{align*}
x &= 3 \\
y &= 33 \\
z &= 36
\end{align*}
\]
Propagating constants through instructions

- Goal: given a constant environment C and an instruction
 - $x = \text{add, } opn_1, opn_2$
 - $x = \text{mul, } opn_1, opn_2$
 - $x = \text{opn}$

Assuming that constant environment C holds before the instruction, what is the constant environment after the instruction?
Propagating constants through instructions

- **Goal:** given a constant environment \(C \) and an instruction
 - \(x = \text{add}, \, \text{opn}_1, \, \text{opn}_2 \)
 - \(x = \text{mul}, \, \text{opn}_1, \, \text{opn}_2 \)
 - \(x = \text{opn} \)

 Assuming that constant environment \(C \) holds *before* the instruction, what is the constant environment *after* the instruction?

- Define an evaluator for operands:

\[
\text{eval}(\text{opn}, \, C) = \begin{cases}
C(\text{opn}) & \text{if opn is a variable} \\
\text{opn} & \text{if opn is an int}
\end{cases}
\]
Propagating constants through instructions

- **Goal:** given a constant environment C and an instruction
 - $x = \text{add}, opn_1, opn_2$
 - $x = \text{mul}, opn_1, opn_2$
 - $x = \text{opn}$

Assuming that constant environment C holds *before* the instruction, what is the constant environment *after* the instruction?

- Define an evaluator for operands:
 $$\text{eval}(\text{opn}, C) = \begin{cases}
 C(\text{opn}) & \text{if opn is a variable} \\
 \text{opn} & \text{if opn is an int}
 \end{cases}$$

- Define an evaluator for instructions
 $$\text{post}(\text{instr}, C) = \begin{cases}
 \bot & \text{if } C \text{ is } \bot \\
 C\{x \mapsto \text{eval}(\text{opn}, C)\} & \text{if instr is } x = \text{opn} \\
 C\{x \mapsto \top\} & \text{if } \text{eval}(\text{opn}_1, C) = \top \lor \text{eval}(\text{opn}_2, C) = \top \\
 C\{x \mapsto \text{eval}(\text{opn}_1, C) + \text{eval}(\text{opn}_2, C)\} & \text{if instr is } x = \text{add } \text{opn}_1, \text{opn}_2 \\
 C\{x \mapsto \text{eval}(\text{opn}_1, C) \times \text{eval}(\text{opn}_2, C)\} & \text{if instr is } x = \text{mul } \text{opn}_1, \text{opn}_2
 \end{cases}$$
Propagating constants through basic blocks

- How do we propagate a constant environment through a basic block?
Propagating constants through basic blocks

- How do we propagate a constant environment through a basic block?
- Block takes the form $\text{instr}_1, \ldots, \text{instr}_n, \text{term}$.

 $\text{take post}(\text{block}, C) = \text{post}(\text{instr}_n, \ldots \text{post}(\text{instr}_1, C))$
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:

```
x = 0
y = x+1
z = y+2
br tgt
```

```
x = 0
y = 0
br tgt
```

\[
\begin{align*}
x &\mapsto 0, y \mapsto 1, z \mapsto 3 \\
\end{align*}
\]

\[
\begin{align*}
x &\mapsto 0, y \mapsto 0, z \mapsto T
\end{align*}
\]
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:

\[
\begin{align*}
e \sqcup \bot &= \bot \sqcup e \\
(e_1 \sqcup e_2)(x) &= \begin{cases} e_1(x) & \text{if } e_1(x) = e_2(x) \\
\top & \text{otherwise} \end{cases}
\end{align*}
\]

\[
x = 0
y = x + 1
z = y + 2
\]
\[
\text{br tgt}
\]

\[
\{x \mapsto 0, y \mapsto 1, z \mapsto 3\}
\]

\[
x = 0
y = 0
\]
\[
\text{br tgt}
\]

\[
\{x \mapsto 0, y \mapsto 0, z \mapsto \top\}
\]

\[
\{x \mapsto 0, y \mapsto \top, z \mapsto \top\}
\]
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:
 - Merge operator \sqcup defined as:
 - $e \sqcup \bot = \bot \sqcup e = e$
 - $(e_1 \sqcup e_2)(x) = \begin{cases} e_1(x) & \text{if } e_1(x) = e_2(x) \\ \top & \text{otherwise} \end{cases}$

\[
\begin{align*}
x &= 0 \\
y &= x + 1 \\
z &= y + 2 \\
\br\ tgt
\end{align*}
\]
For *acyclic graphs*: topologically sort basic blocks, propagate constant environments forward
- Constant environment for entry node maps each variable to \top
Propagating constants through control flow graphs

- **For acyclic graphs**: topologically sort basic blocks, propagate constant environments forward
 - Constant environment for entry node maps each variable to \top
- What about loops?
Recall: a partial order \(\sqsubseteq \) is a binary relation that is

- Reflexive: \(a \sqsubseteq a \)
- Transitive: \(a \sqsubseteq b \) and \(b \sqsubseteq c \) implies \(a \sqsubseteq c \)
- Antisymmetric: \(a \sqsubseteq b \) and \(b \sqsubseteq a \) implies \(a = b \)

Examples: the subset relation, the divisibility relation on the integers, ...

Place a partial order on \(\mathbb{Z} \cup \{\bot, \top\} \):

\(\bot \sqsubseteq n \sqsubseteq \top \) (most information to least information)

Lift the ordering to constant environments:

\(f \sqsubseteq g \) iff \(f(x) \sqsubseteq g(x) \) for all \(x \)

\(f \sqsubseteq g \): \(f \) is a “better” constant environment than \(g \)

\(f \) sends \(x \) to \(\top \) implies \(g \) sends \(x \) to \(\top \)

The merge operation \(\sqcup \) is the least upper bound in this order:

\(t_1 \sqsubseteq (t_1 \sqcup t_2) \) and \(t_2 \sqsubseteq (t_1 \sqcup t_2) \)

For any type \(t' \) such that \(t_1 \sqsubseteq t' \) and \(t_2 \sqsubseteq t' \), we have \((t_1 \sqcup t_2) \sqsubseteq t' \)
• Recall: a partial order \sqsubseteq is a binary relation that is
 • Reflexive: $a \sqsubseteq a$
 • Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
 • Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a = b$

• Examples: the subset relation, the divisibility relation on the integers, ...

• Place a partial order on $\mathbb{Z} \cup \{\bot, \top\}$: $\bot \sqsubseteq n \sqsubseteq \top$ (most information to least information)
Recall: a partial order \sqsubseteq is a binary relation that is
- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a = b$

Examples: the subset relation, the divisibility relation on the integers, ...

Place a partial order on $\mathbb{Z} \cup \{\bot, \top\}$: $\bot \sqsubseteq n \sqsubseteq \top$ (most information to least information)

Lift the ordering to constant environments: $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all x
- $f \sqsubseteq g$: f is a “better” constant environment than g
- f sends x to \top implies g sends x to \top

The merge operation \sqcup is the least upper bound in this order:
- $t_1 \sqsubseteq (t_1 \sqcup t_2)$ and $t_2 \sqsubseteq (t_1 \sqcup t_2)$
- For any type t' such that $t_1 \sqsubseteq t'$ and $t_2 \sqsubseteq t'$, we have $(t_1 \sqcup t_2) \sqsubseteq t'$
• Recall: a partial order \(\sqsubseteq \) is a binary relation that is
 • Reflexive: \(a \sqsubseteq a \)
 • Transitive: \(a \sqsubseteq b \) and \(b \sqsubseteq c \) implies \(a \sqsubseteq c \)
 • Antisymmetric: \(a \sqsubseteq b \) and \(b \sqsubseteq a \) implies \(a = b \)

• Examples: the subset relation, the divisibility relation on the integers, ...

• Place a partial order on \(\mathbb{Z} \cup \{ \bot, \top \} \): \(\bot \sqsubseteq n \sqsubseteq \top \) (most information to least information)

• Lift the ordering to constant environments: \(f \sqsubseteq g \) iff \(f(x) \sqsubseteq g(x) \) for all \(x \)
 • \(f \sqsubseteq g \): \(f \) is a “better” constant environment than \(g \)
 • \(f \) sends \(x \) to \(\top \) implies \(g \) sends \(x \) to \(\top \)

• The merge operation \(\sqcup \) is the least upper bound in this order:
 • \(t_1 \sqsubseteq (t_1 \sqcup t_2) \) and \(t_2 \sqsubseteq (t_1 \sqcup t_2) \)
 • For any type \(t' \) such that \(t_1 \sqsubseteq t' \) and \(t_2 \sqsubseteq t' \), we have \((t_1 \sqcup t_2) \sqsubseteq t' \)
Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- For each basic block $bb \in N$, associate two constant environments $IN[bb]$ and $OUT[bb]$
 - $IN[bb]$ is the constant environment at the *entry* of bb
 - $OUT[bb]$ is the constant environment at the *exit* of bb

- Fact: if IN, OUT is conservative,
 - If $IN[bb](x) = n$, then whenever program execution reaches bb entry, the value of x is n
 - If $IN[bb](x) = \perp$, then program execution cannot reach bb
 - Similarly for OUT
Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- For each basic block $bb \in N$, associate two constant environments $IN[bb]$ and $OUT[bb]$
 - $IN[bb]$ is the constant environment at the entry of bb
 - $OUT[bb]$ is the constant environment at the exit of bb
- Say that the assignment IN, OUT is conservative if
 1. $IN[s]$ assigns each variable \top
 2. For each node $bb \in V$, $OUT[bb] \sqsubseteq post(bb, IN[bb])$
 3. For each edge $src \rightarrow dst \in E$, $IN[dst] \sqsubseteq OUT[src]$
Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- For each basic block $bb \in N$, associate two constant environments $\text{IN}[bb]$ and $\text{OUT}[bb]$
 - $\text{IN}[bb]$ is the constant environment at the entry of bb
 - $\text{OUT}[bb]$ is the constant environment at the exit of bb
- Say that the assignment IN, OUT is conservative if
 1. $\text{IN}[s]$ assigns each variable \top
 2. For each node $bb \in V$,
 $$\text{OUT}[bb] \sqsubseteq \text{post}(bb, \text{IN}[bb])$$
 3. For each edge $src \rightarrow dst \in E$,
 $$\text{IN}[dst] \sqsubseteq \text{OUT}[src]$$
- Fact: if IN, OUT is conservative, then
 - If $\text{IN}[bb](x) = n$, then whenever program execution reaches bb entry, the value of x is n
 - If $\text{IN}[bb](x) = \bot$, then program execution cannot reach bb
 - Similarly for OUT
• Payoff: when constant environment sends a variables x to a constant (not \top), can replace reads to x with that constant
• More constant assignments \Rightarrow more optimization
• Payoff: when constant environment sends a variables x to a constant (not \top), can replace reads to x with that constant

• More constant assignments \Rightarrow more optimization

• Want *least* conservative assignment

 1. IN, OUT is conservative
 2. If IN', OUT' is a conservative assignment, then for any bb we have

 - $\text{IN}[bb] \subseteq \text{IN}'[bb]$
 - $\text{OUT}[bb] \subseteq \text{OUT}'[bb]$
Computing the least conservative assignment of constant environments

- Initialize $\text{IN}[s]$ to the constant environment that sends every variable to \top and $\text{OUT}[s]$ to the constant environment that sends every variable to \bot.
- Initialize $\text{IN}[bb]$ and $\text{OUT}[bb]$ to the constant environment that sends every variable to \bot for every other basic block.
Computing the least conservative assignment of constant environments

- Initialize $\text{IN}[s]$ to the constant environment that sends every variable to \top and $\text{OUT}[s]$ to the constant environment that sends every variable to \bot.
- Initialize $\text{IN}[bb]$ and $\text{OUT}[bb]$ to the constant environment that sends every variable to \bot for every other basic block
- Choose a constraint that is not satisfied by IN, OUT
 - If there is basic block bb with $\text{OUT}[bb] \nsubseteq \text{post}(bb, \text{IN}[bb])$, then set $\text{OUT}[bb] := \text{post}(bb, \text{IN}[bb])$
 - If there is an edge $src \rightarrow dst \in E$ with $\text{IN}[dst] \nsubseteq \text{OUT}[src]$, then set $\text{IN}[dst] := \text{IN}[dst] \sqcup \text{OUT}[src]$
- Terminate when all constraints are satisfied.
Computing the least conservative assignment of constant environments

- Initialize $\text{IN}[s]$ to the constant environment that sends every variable to \top and $\text{OUT}[s]$ to the constant environment that sends every variable to \bot.
- Initialize $\text{IN}[bb]$ and $\text{OUT}[bb]$ to the constant environment that sends every variable to \bot for every other basic block.
- Choose a constraint that is not satisfied by IN, OUT
 - If there is basic block bb with $\text{OUT}[bb] \not\supseteq \text{post}(bb, \text{IN}[bb])$, then set
 \[\text{OUT}[bb] := \text{post}(bb, \text{IN}[bb]) \]
 - If there is an edge $src \rightarrow dst \in E$ with $\text{IN}[dst] \not\supseteq \text{OUT}[src]$, then set
 \[\text{IN}[dst] := \text{IN}[dst] \sqcup \text{OUT}[src] \]
- Terminate when all constraints are satisfied.
- *This algorithm always converges on the least conservative assignment of constant environments*