COS320: Compiling Techniques

Zak Kincaid

April 21, 2020
• Reminder: HW4 is due **today**
 • Typo in `hw4programs/field_overlap.oat`:
    ```
    int program (int argc, string[] argv)
    ```

• HW5 released today. You will implement:
 • The worklist algorithm for dataflow analysis
 • Constant propagation
 • Alias analysis & dead code elimination
 • Register allocation
Loop transformations
Loops

- Almost all execution time is inside loops
- Many optimizations are centered around transforming loops
 - Loop invariant code motion: hoist expressions out of loops to avoid re-computation
 - Loop unrolling: avoid branching by executing several iterations of a loop
 - Strength reduction: replace a costly operation inside a loop with a cheaper one
 - Lots more: parallelization, tiling, vectorization, ...
What is a loop?

• We're after a *graph-theoretic* definition of a loop
 • Not sensitive to syntax of source language (loops can be created with *while*, *for*, *goto*, ...)

• First attempt: SCCs
 • Not fine enough – nested loops have only one SCC, but we want to transform them separately
 • Too general – makes it difficult to apply transformations

• Desiderata:
 • Many loop optimizations require inserting code immediately before the loop enters, so loop definition should make that easy
 • Want to at least capture loops that would result from structured programming (programs built with *while*, *for*, *if*, and sequencing (no *goto*!))
What is a loop?

- We’re after a graph-theoretic definition of a loop
 - Not sensitive to syntax of source language (loops can be created with `while`, `for`, `goto`, ...)
- First attempt: SCCs
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations
What is a loop?

- We're after a *graph-theoretic* definition of a loop
 - Not sensitive to syntax of source language (loops can be created with `while`, `for`, `goto`, ...)
- First attempt: SCCs
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations
- Desiderata:
 - Many loop optimizations require inserting code *immediately before* the loop enters, so loop definition should make that easy
 - Want to *at least* capture loops that would result from structured programming (programs built with `while`, `if`, and sequencing (no `goto`!))
What is a loop?

- A **loop** of a control flow graph is a set of nodes S such that:
 1. S is strongly connected
 2. There is a *header* node h that dominates all nodes in S
 3. There is no edge from any node outside of S to any node inside of S, except for h
What is a loop?

- A **loop** of a control flow graph is a set of nodes S such that
 1. S is strongly connected
 2. There is a *header* node h that dominates all nodes in S
 3. There is no edge from any node outside of S to any node inside of S, except for h

- Observe: a loop has one entry, but may have multiple exits (or none)
 - A *loop entry* is a node with some predecessor outside the loop
 - A *loop exit* is a node with some successor outside the loop
Strongly connected subgraph

Dominator tree
Strongly connected subgraph

Dominator tree
Identifying loops

• A back edge is an edge $u \rightarrow v$ such that v dominates u
Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u.
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from v.

![Diagram](image-url)
Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u.
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from v.

```
a
  ↓
 b
  ↓
 c
  ➔
 d
  ➔
 e
  ➔
 f
```
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u.
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from v.
Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u.
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from v.
Every natural loop is a loop:
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to \(u \) (that doesn’t pass through \(v \))
 - Every node has a path from \(v \) (path from entry to node to \(u \) must include \(v \))
Every natural loop is a loop:

1. Strongly connected
 - By DFS construction every node has a path to u (that doesn’t pass through v)
 - Every node has a path from v (path from entry to node to u must include v)

2. Header (v) dominates the loop
Every natural loop is a loop:

1. Strongly connected
 - By DFS construction every node has a path to u (that doesn’t pass through v)
 - Every node has a path from v (path from entry to node to u must include v)

2. Header (v) dominates the loop

3. Single entry
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to u (that doesn’t pass through v)
 - Every node has a path from v (path from entry to node to u must include v)

2. **Header (v) dominates the loop**

3. **Single entry**
 - By DFS construction, all predecessors of any node except v belongs to the loop
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to \(u \) (that doesn’t pass through \(v \))
 - Every node has a path from \(v \) (path from entry to node to \(u \) must include \(v \))

2. **Header \((v)\) dominates the loop**

3. **Single entry**
 - By DFS construction, all predecessors of any node except \(v \) belongs to the loop

But not every loop is natural:
Nested loops

• Say that a loop B is *nested* within A if $B \subseteq A$
• A node can be the header of more than one natural loop.
 • Neither is nested inside the other
 • Commonly, we merge natural loops with the same header
Nested loops

• Say that a loop B is nested within A if $B \subseteq A$
• A node can be the header of more than one natural loop.
 • Neither is nested inside the other
 • Commonly, we merge natural loops with the same header
• Loops obtained by merging natural loops with the same header are either disjoint or nested
 • Loops can be organized into a forest
Nested loops

- Say that a loop B is *nested* within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - Neither is nested inside the other
 - Commonly, we merge natural loops with the same header
- Loops obtained by merging natural loops with the same header are either disjoint or nested
 - Loops can be organized into a forest
- We typically apply loop transformations “bottom-up”, starting with innermost loops
Loop preheaders

- Some optimizations (e.g., loop-invariant code motion) require inserting statements immediately before a loop executes
- A *loop preheader* is a basic block that is inserted immediately before the loop header, to serve as a place to store these statements
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop’s preheader, as long as they are not side-effecting...
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop’s preheader, as long as they are not side-effecting.
- SSA based LICM:
 - An operand is *invariant* in a loop L if
 1. It is a constant, or
 2. It is a gid, or
 3. It is a uid, whose definition does not belong to L
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting.
- SSA based LICM:
 - An operand is invariant in a loop L if
 1. It is a constant, or
 2. It is a gid, or
 3. It is a uid, whose definition does not belong to L
 - For each computation $\%x = opn_1 \ op \ opn_2$, if opn_1 and opn_2 are both invariant, move $\%x = opn_1 \ op \ opn_2$ to pre-header
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop’s preheader, as long as they are not side-effecting

- SSA based LICM:
 - An operand is invariant in a loop L if
 1. It is a constant, or
 2. It is a gid, or
 3. It is a uid, whose definition does not belong to L
 - For each computation $x = opn_1 \ op \ opn_2$, if opn_1 and opn_2 are both invariant, move $x = opn_1 \ op \ opn_2$ to pre-header
 - This moves definition of x outside of the loop, so x is now invariant
%i_0 = 0
br loop

%i_1 = \phi(%i_0, %i_2)
%t_1 = %n * %n
%t_2 = %t_1 * %n
%t_3 = %i_1 - %t_2
blz %t_3, body, exit

%i_2 = %i_1 + 1
b loop

return %i_1
%i_0 = 0
br ph

br loop

%i_1 = ϕ(%i_0, %i_2)
%t1 = %n * %n
%t2 = %t1 * %n
%t3 = %i_1 - %t2
blz %t3, body, exit

%i_2 = %i_1 + 1
b loop

return %i_1
%i₀ = 0
br ph

%t₁ = %n * %n
br loop

%i₁ = ϕ(%i₀, %i₂)
%t₂ = %t₁ * %n
%t₃ = %i₁ - %t₂
blz %t₃, body, exit

%i₂ = %i₁ + 1
b loop

return %i₁
%i_0 = 0
br ph

%t1 = %n * %n
%t2 = %t1 * %n
br loop

%i_1 = φ(%i_0, %i_2)
%t3 = %i_1 - %t2
blz %t3, body, exit

%i_2 = %i_1 + 1
b loop

return %i_1
Induction variables

- An *induction variable* is a variable $%x$ such that the difference between successive values of $%x$ in a loop is constant.
 - Common example: the loop counter in a `for` loop
    ```cpp
    for (int i = 0; i < n; i++)
    ```
 - Using $%x(k)$ to denote the value of $%x$ in the kth iteration of a loop, there is some constant $\Delta(%x)$ such that
 $$%
x(k + 1) = %x(k) + \Delta(%x)$$
- A variable $%x$ is a *basic induction variable* for a loop L if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.
 - $%x(i + 1) = %x(i) + c$ \Rightarrow $\Delta(%x) = c$
- A variable $%y$ is a *derived induction variable* for a loop L if it is an affine function of a basic induction variable
 - $%y(i) = a \cdot %x(i) + b$ \Rightarrow $\Delta(%y) = a \cdot \Delta(%x)$
Induction variables

• An *induction variable* is a variable $\%_0 x$ such that the difference between successive values of $\%_0 x$ in a loop is constant.
 - Common example: the loop counter in a for loop
 for (int i = 0; i < n; i++)
 - Using $\%_0 x(k)$ to denote the value of $\%_0 x$ in the kth iteration of a loop, there is some constant $\Delta(\%_0 x)$ such that
 $$\%_0 x(k + 1) = \%_0 x(k) + \Delta(\%_0 x)$$

• Useful for several optimizations
 - Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision
Induction variables

• An *induction variable* is a variable $\%x$ such that the difference between successive values of $\%x$ in a loop is constant.

 • Common example: the loop counter in a `for` loop

    ```java
    for (int i = 0; i < n; i++)
    ```

 • Using $\%x(k)$ to denote the value of $\%x$ in the kth iteration of a loop, there is some constant $\Delta(\%x)$ such that

 $$\%x(k + 1) = \%x(k) + \Delta(\%x)$$

• Useful for several optimizations

 • Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision

• A variable $\%x$ is an *basic induction variable* for a loop L if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.

 • $\%x(i + 1) = \%x(i) + c \Rightarrow \Delta(\%x) = c$
Induction variables

• An *induction variable* is a variable \(%x \) such that the difference between successive values of \(%x \) in a loop is constant.
 • Common example: the loop counter in a `for` loop
    ```c
    for (int i = 0; i < n; i++)
    ```
 • Using \(%x(k) \) to denote the value of \(%x \) in the \(k \)th iteration of a loop, there is some constant \(\Delta(%x) \) such that
 \[
 %x(k + 1) = %x(k) + \Delta(%x)
 \]

• Useful for several optimizations
 • Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision

• A variable \(%x \) is an *basic induction variable* for a loop \(L \) if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.
 • \(%x(i + 1) = %x(i) + c \Rightarrow \Delta(%x) = c \)

• A variable \(%y \) is an *derived induction variable* for a loop \(L \) if it is an affine function of a basic induction variable.
 • \(%y(i) = a \cdot %x(i) + b \Rightarrow \Delta(%y) = a \cdot c \)
Finding induction variables

- **Basic induction variable detection:**
 - Look for ϕ statements $\%x = \phi(\%x_1, ..., \%x_n)$ in header
 - Each position $\%x_i$ corresponding to a back edge of the loop must be the same uid, say $\%x_k$
 - Find chain of assignments for $\%x_k$ leading back to $\%x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow \%x$ is an basic induction var.

- **To detect derived induction variables:**
 - Choose a basic induction variable $\%x$
 - Find assignments of the form $\%y = \text{op}\, \%x_k\, \text{op}\, \%x_1\, \text{op}\, \%x_2$ where
 - op is $+$ or $-$ and $\%x_1$ and $\%x_2$ are either $\%x$, derived induction variables of $\%x$, or loop invariant quantities
 - op is \ast and $\%x_1$ and $\%x_2$ are as above, and at least one is a loop invariant quantity
Basic induction variable detection:

- Look for ϕ statements $%x = \phi(%x_1, \ldots, %x_n)$ in header
 - Each position $%x_i$ corresponding to a back edge of the loop must be the same uid, say $%x_k$
 - Find chain of assignments for $%x_k$ leading back to $%x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow %x$ is an basic induction var.

To detect derived induction variables:

- Choose a basic induction variable $%x$
- Find assignments of the form $%y = opn_1 \, op \, opn_2$ where
 - op is $+$ or $-$ and opn_1 and opn_2 are either $%x$, derived induction variables of $%x$, or loop invariant quantities
 - op is $*$ and opn_1 and opn_2 are as above, and at least one is a loop invariant quantity
Strength reduction

Idea: replace expensive operation with cheaper one (e.g., replace multiplication w/ addition).

```
long trace (long *m, long n) {
    long i;
    long result = 0;
    for (i = 0; i < n; i++) {
        result += *(m + i*n + i);
    }
    return result;
}
```

```
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    for (i = 0; i < n; i++) {
        result += *next;
        next += i + 1;
    }
    return result;
}
```
\[i_1 = \phi(i_0, i_2) \]
\[\text{result}_1 = \phi(\text{result}_0, \text{result}_2) \]
\[t_1 = i_1 - n \]
\[\text{blz } t_1, \text{body, exit} \]

\[t_2 = i_1 \times n \]
\[t_3 = m + t_2 \]
\[t_4 = t_3 + i_1 \]
\[t_5 = \text{load } t_4 \]
\[\text{result}_2 = \text{result}_1 + t_5 \]
\[i_2 = i_1 + 1 \]
\[b \text{ loop} \]
\[
\begin{align*}
%i_1 &= \phi(\%i_0, \%i_2) \\
%result_1 &= \phi(\%result_0, \%result_2) \\
%t1 &= %i_1 - \%n \\
blz \ %t1, \ body, \ exit \\
%t2 &= %i_1 \times \%n \\
%t3 &= \%m + \%t2 \\
%t4 &= \%t3 + %i_1 \\
%t5 &= \text{load} \ %t4 \\
%result_2 &= %result_1 + \%t5 \\
%i_2 &= %i_1 + 1 \\
b \ loop
\end{align*}
\]
\(i_1 = \phi(i_0, i_2) \) \(i := i + 1 \)

\(\text{result}_1 = \phi(\text{result}_0, \text{result}_2) \)

\(t1 = i_1 - n \)

blz \(t1 \), body, exit

\(t2 = i_1 \times n \)

\(t3 = m + t2 \)

\(t4 = t3 + i_1 \)

\(t5 = \text{load} \ t4 \)

\(\text{result}_2 = \text{result}_1 + t5 \)

\(i_2 = i_1 + 1 \)

b \ loop
\[i_1 = \phi(i_0, i_2) \]
\[i := i + 1 \]
\[\text{result}_1 = \phi(\text{result}_0, \text{result}_2) \]
\[t_1 = i_1 - n \]
\[\text{blz } t_1, \text{body}, \text{exit} \]

\[t_2 = i_1 \times n \]
\[t_3 = m + t_2 \]
\[t_4 = t_3 + i_1 \]
\[t_5 = \text{load } t_4 \]
\[\text{result}_2 = \text{result}_1 + t_5 \]
\[i_2 = i_1 + 1 \]
\[\text{b loop} \]
\[i_1 = \phi(i_0, i_2) \quad \text{i} := \text{i} + 1 \]

\[\text{result}_1 = \phi(\text{result}_0, \text{result}_2) \]

\[t_1 = i_1 - n \quad \text{t1} := \text{i} + \text{n} \]

blz \(t_1 \), body, exit

\[t_2 = i_1 \times n \quad \text{t2} := n \times i \]

\[t_3 = m + t_2 \]

\[t_4 = t_3 + i_1 \]

\[t_5 = \text{load } t_4 \]

\[\text{result}_2 = \text{result}_1 + t_5 \]

\[i_2 = i_1 + 1 \]

b loop
\[i_1 = \phi(i_0, i_2) \]
\[\text{result}_1 = \phi(\text{result}_0, \text{result}_2) \]
\[t_1 = i_1 - n \]

\[\text{blz } t_1, \text{body, exit} \]

\[t_2 = i_1 \times n \]
\[t_3 = m + t_2 \]
\[t_4 = t_3 + i_1 \]
\[t_5 = \text{load } t_4 \]
\[\text{result}_2 = \text{result}_1 + t_5 \]
\[i_2 = i_1 + 1 \]

b loop
%i_1 = \phi(%i_0, %i_2)
\%result_1 = \phi(\%result_0, \%result_2)
\%t_1 = \%i_1 - \%n
\
blz \%t_1, body, exit

\%t_2 = \%i_1 \times \%n
\%t_3 = \%m + \%t_2
\%t_4 = \%t_3 + \%i_1
\%t_5 = \text{load} \%t_4
\%result_2 = \%result_1 + \%t_5
\%i_2 = \%i_1 + 1
\
b\ loop
%t2₀ = 0
%t3₀ = %m
%t4₀ = %m

%i₁ = \phi(%i₀, %i₂)
i := i + 1
%t2₁ = \phi(%t2₀, %t2₂)
%t3₁ = \phi(%t3₀, %t3₂)
%t4₁ = \phi(%t4₀, %t4₂)
%result₁ = \phi(%result₀, %result₂)
%t1 = %i₁ - %n
t₁ := i + n
blz %t1, body, exit

%t2₂ = %t2₁ + %n
t₂ := n\cdot i
%t3₂ = %t3₁ + %n
t₃ := n\cdot i + m
%t6 = %t4₂ + %n
%t4₂ = %t6 + 1
t₄ := (n+1)\cdot i + m
%t5 = load %t4₂
%result₂ = %result₁ + %t5
%i₂ = %i₁ + 1
b loop
Loop unrolling

- Some loops are so small that a significant portion of the running time is due to testing the loop exit condition.
- We can avoid branching by executing several iterations of the loop at once.
- This optimization trades (potential) run-time performance with code size.
bgz t + 3
∆(t), in, out
Conditional branch ⇝ unconditional branch
Redirect back-edges to next loop copy
Insert epilogue, in case # iterations is not divisible by 4

x

h

\(t \) an ind. var w/ \(\Delta(t) = c \leq 0 \)
Single exit: `bgz t, in, out`

`t` an ind. var w/ $\Delta(t) = c \leq 0$
bgz t + 3
\[\Delta(t) \], in, out

Conditional branch \Rightarrow unconditional branch

Redirect back-edges to next loop copy

Copy loop

Single exit: bgz t, in, out

t an ind. var w/ $\Delta(t) = c \leq 0$
Conditional branch \leadsto unconditional branch

bgz $t + 3\Delta(t)$, in, out

Insert epilogue, in case # iterations is not divisible by 4

Copy loop

Single exit:
Redirect back-edges to next loop copy
bgz t + 3
$\Delta(t)$, in, out

Conditional branch \Rightarrow unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4
Optimization wrap-up

• Optimizer operates as a series of IR-to-IR transformations
• Transformations are typically supported by some analysis that proves the transformation is safe
• Each transformation is simple
• Transformations are mutually beneficial
 • Series of transformations can make drastic changes!