COS320: Compiling Techniques

Zak Kincaid

February 25, 2020

Lexing

Compiler phases (simplified)

- The lexing (or lexical analysis) phase of a compiler breaks a stream of characters (source text) into a stream of tokens.
- Whitespace and comments often discarded
- A token is a sequence of characters treated as a unit. Each token is associated with a token type:
- identifier tokens: x, y, foo, ...
- integer tokens: $0,1,-14,512, \ldots$
- if tokens: if
- Algebraic datatypes are a convenient representation for tokens

type token $=$	IDENT of string
	INT of int
	IF
	\cdots

```
// compute absolute value
if (x<0) {
    return -x;
} else {
    return x;
}
```


\downarrow Lexer

IF, LPAREN, IDENT "x", LT, INT 0, RPAREN, LBRACE,
RETURN, MINUS, IDENT "x", SEMI,
RBRACE, ELSE, LBRACE,
RETURN, IDENT "x", SEMI,
RBRACE

Implementing a lexer

- Option 1: write by hand
- Option 2: use a lexer generator
- Write a lexical specification in a domain-specific language
- Lexer generator compiles specification to a lexer (in language of choice)
- Many lexer generators available
- lex, flex, ocamllex, jflex, ...

Formal Languages

- An alphabet Σ is a finite set of symbols (e.g., $\{0,1\}$, ASCII, unicode, tokens).
- A word (or string) over Σ is a finite sequence $w=w_{1} w_{2} w_{3} \ldots w_{n}$, with each $w_{i} \in \Sigma$.
- The empty word ϵ is a word over any alphabet
- The set of all words over Σ is typically denoted Σ^{*}
- E.g., $01001 \in\{0,1\}^{*}$, covfefe $\in\{a, \ldots, z\}^{*}$
- A language over Σ is a set of words over Σ
- Integer literals form a language over $\{0, \ldots, 9,-\}$
- The keywords of OCaml form a (finite) language over ASCII
- Syntactically-valid Java programs forms an (infinite) language over Unicode

Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
- Abstract syntax of regular expressions:

```
<RegExp> ::= \epsilon
    |
    | <RegExp><RegExp>
    | <RegExp>|<RegExp>
```

 \(\mid<\) RegExp \(>^{*}\) Repetition

Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
- Abstract syntax of regular expressions:

```
<RegExp> ::= \epsilon
    |
    | <RegExp><RegExp>
    |<RegExp>|<RegExp>
```

 \(\mid<\) RegExp>* Repetition
 - Meaning of regular expressions:

$$
\begin{aligned}
\mathcal{L}(\epsilon) & =\{\epsilon\} \\
\mathcal{L}(a) & =\{a\} \\
\mathcal{L}\left(R_{1} R_{2}\right) & =\left\{u v: u \in \mathcal{L}\left(R_{1}\right) \wedge v \in \mathcal{L}\left(R_{2}\right)\right\} \\
\mathcal{L}\left(R_{1} \mid R_{2}\right) & =\mathcal{L}\left(R_{1}\right) \cup \mathcal{L}\left(R_{2}\right) \\
\mathcal{L}\left(R^{*}\right) & =\{\epsilon\} \cup \mathcal{L}(R) \cup \mathcal{L}(R R) \cup \mathcal{L}(R R R) \cup \ldots
\end{aligned}
$$

ocamllex regex concrete syntax

- 'a': letter
- "abc": string (equiv. 'a"b"c')
- $\mathrm{R}+$: one or more repetitions of R (equiv. $\mathrm{RR} *$)
- R ?: zero or one R (equiv. $R \mid \epsilon$)
- ['a'-'z']: character range (equiv. 'a'|'b'|...|'z')
- R as x : bind string matched by R to variable x

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification Example lexical specification:

$$
\begin{aligned}
\overbrace{\text { identifier }}^{\text {token type }} & =\overbrace{[a-z A-Z][a-z A-Z 0-9]^{*}}^{\text {pattern }} \\
\text { integer } & =[1-9][0-9]^{*} \\
\text { plus } & =+
\end{aligned}
$$

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification Example lexical specification:

$$
\begin{aligned}
\text { identifier } & =\overbrace{[a-z A-Z][a-z A-Z 0-9]^{*}}^{\text {token type }} \\
\text { integer } & =[1-9][0-9]^{*} \\
\text { plus } & =+
\end{aligned}
$$

 token type lexeme

Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification
Example lexical specification:

$$
\begin{aligned}
\text { identifier } & =\overbrace{[a-z A-Z][a-z A-Z 0-9]^{*}}^{\text {token type }} \\
\text { integer } & =[1-9][0-9]^{*} \\
\text { plus } & =+
\end{aligned}
$$

- "foo $+42+$ bar" $\rightarrow \underbrace{\text { identifier "foo", }} \underbrace{\text {, plus " }+ \text { ", integer " } 42 \text { ", plus " }+ \text { ", identifier "bar" }}$ token type lexeme
- Typically, lexical spec associates an action to each token type, which is code that is evaluted on the lexeme (often: produce a token value)

Disambiguation

- May be more than one way to lex a string:

$$
\begin{aligned}
I F & =\mathrm{if} \\
I D E N T & =[\mathrm{a}-\mathrm{zA}-\mathrm{Z}][\mathrm{a}-\mathrm{zA}-\mathrm{Z} 0-9]^{*} \\
I N T & =[1-9][0-9]^{*} \\
L T & =<
\end{aligned}
$$

- Input string ifx<10: IDENT "ifx", LT, INT 10 or IF, IDENT " x ", LT, INT 10 ?
- Input string if $x<9$: IF, IDENT " x ", LT, INT 9 or IDENT "if", IDENT " x ", LT, INT 9 ?

Disambiguation

- May be more than one way to lex a string:

$$
\begin{aligned}
I F & =\mathrm{if} \\
I D E N T & =[\mathrm{a}-\mathrm{zA}-\mathrm{Z}][\mathrm{a}-\mathrm{zA}-\mathrm{z} 0-9]^{*} \\
I N T & =[1-9][0-9]^{*} \\
L T & =<
\end{aligned}
$$

- Input string ifx<10: IDENT "ifx", LT, INT 10 or IF, IDENT " x ", LT, INT 10 ?
- Input string if $\mathrm{x}<9$: IF, IDENT " x ", LT, INT 9 or IDENT "if", IDENT " x ", LT, INT 9 ?
- The lexer is greedy: always prefer longest match
- Order matters: prefer earlier patterns

Lexer generator pipeline

- Lexical specification is compiled to a deterministic finite automaton (DFA), which can be executed efficiently
- Typical pipeline: lexical specification \rightarrow nondeterministic FA \rightarrow DFA
- Kleene's theorem: regular expressions, NFAs, and DFAs describe the same class of languages
- A language is regular if it is accepted by a regular expression (equiv., NFA, DFA).

Deterministic finite automata (DFA)

A deterministic finite automaton (DFA) $A=(Q, \Sigma, \delta, s, F)$ consists of

- Q : finite set of states
- Σ : finite alphabet
- $\delta: Q \times \Sigma \rightarrow Q$: transition function
- Every state has exactly one outgoing edge per letter
- $s \in Q$: initial state
- $F \subseteq Q$: final states

DFA accepts a string $w=w_{1} \ldots w_{n} \in \Sigma^{*}$ iff $\delta\left(\ldots \delta\left(\delta\left(s, w_{1}\right), w_{2}\right), \ldots, w_{n}\right) \in F$.

Non-deterministic finite automata

A non-deterministic finite automaton (NFA) $A=(Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

- $\Delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$: transition relation
- A state can have more than one outgoing edge for a given letter
- A state can have no outgoing edges for a given letter
- A state can have ϵ-transitions (read no input, but change state)

Non-deterministic finite automata

A non-deterministic finite automaton (NFA) $A=(Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

- $\Delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$: transition relation
- A state can have more than one outgoing edge for a given letter
- A state can have no outgoing edges for a given letter
- A state can have ϵ-transitions (read no input, but change state)

NFA accepts a string $w=w_{1} \ldots w_{n} \in \Sigma^{*}$ iff there exists a w-labeled path from q_{0} to an accepting state (i.e., there is some sequence $\left(q_{0}, u_{1}, q_{1}\right),\left(q_{1}, u_{2}, q_{2}\right), \ldots,\left(q_{m-1}, u_{m}, q_{m}\right)$ with $q_{0}=s$, $q_{m} \in F$, and $u_{1} u_{2} \ldots u_{m}=w$.

Regex \rightarrow NFA

Case: ϵ (empty word)

Regex \rightarrow NFA

Case: a (letter)

Regex \rightarrow NFA

Case: $R_{1} R_{2}$ (concatenation)

Regex \rightarrow NFA

Case: $R_{1} R_{2}$ (concatenation)

Regex \rightarrow NFA

Case: $R_{1} \mid R_{2}$ (alternative)

Regex \rightarrow NFA

Case: $R_{1} \mid R_{2}$ (alternative)

Regex \rightarrow NFA

Case: R^{*} (iteration)

Regex \rightarrow NFA

Case: R^{*} (iteration)

NFA \rightarrow DFA

- For any NFA, there is a DFA that recognizes the same language
- Intuition: the DFA simulates all possible paths of the NFA simultaneously
- There is an unbounded number of paths but we only care about the "end state" of each path, not its history
- States of the DFA track the set of possible states the NFA could be in
- DFA accepts when some path accepts

NFA \rightarrow DFA

start $\rightarrow s_{0}$

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA

NFA \rightarrow DFA, formally

- Have: NFA $A=(Q, \Sigma, \delta, s, F)$. Want: DFA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
$\epsilon-\operatorname{cl}(S)=$ smallest set that contains S and such that $\forall\left(q, \epsilon, q^{\prime}\right) \in \Delta, q \in S \Rightarrow q^{\prime} \in S$

NFA \rightarrow DFA, formally

- Have: NFA $A=(Q, \Sigma, \delta, s, F)$. Want: DFA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
$\epsilon-\operatorname{cl}(S)=$ smallest set that contains S and such that $\forall\left(q, \epsilon, q^{\prime}\right) \in \Delta, q \in S \Rightarrow q^{\prime} \in S$
- Construct DFA as follows:
- $Q^{\prime}=$ set of all ϵ-closed subsets of Q
- $\delta^{\prime}(S, a)=\epsilon$-closure of $\left\{q_{2}: \exists q_{1} \in S .\left(q_{1}, a, q_{2}\right) \in \Delta\right\}$
- $s^{\prime}=\epsilon$-closure of $\{s\}$
- $F^{\prime}=\left\{S \in Q^{\prime}: S \cap F \neq \emptyset\right\}$

NFA \rightarrow DFA, formally

- Have: NFA $A=(Q, \Sigma, \delta, s, F)$. Want: DFA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
$\epsilon-\operatorname{cl}(S)=$ smallest set that contains S and such that $\forall\left(q, \epsilon, q^{\prime}\right) \in \Delta, q \in S \Rightarrow q^{\prime} \in S$
- Construct DFA as follows:
- $Q^{\prime}=$ set of all ϵ-closed subsets of Q
- $\delta^{\prime}(S, a)=\epsilon$-closure of $\left\{q_{2}: \exists q_{1} \in S .\left(q_{1}, a, q_{2}\right) \in \Delta\right\}$
- $s^{\prime}=\epsilon$-closure of $\{s\}$
- $F^{\prime}=\left\{S \in Q^{\prime}: S \cap F \neq \emptyset\right\}$
- Crucial optimization: only construct states that are reachable from s^{\prime}

NFA \rightarrow DFA, formally

- Have: NFA $A=(Q, \Sigma, \delta, s, F)$. Want: DFA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
$\epsilon-\operatorname{cl}(S)=$ smallest set that contains S and such that $\forall\left(q, \epsilon, q^{\prime}\right) \in \Delta, q \in S \Rightarrow q^{\prime} \in S$
- Construct DFA as follows:
- $Q^{\prime}=$ set of all ϵ-closed subsets of Q
- $\delta^{\prime}(S, a)=\epsilon$-closure of $\left\{q_{2}: \exists q_{1} \in S .\left(q_{1}, a, q_{2}\right) \in \Delta\right\}$
- $s^{\prime}=\epsilon$-closure of $\{s\}$
- $F^{\prime}=\left\{S \in Q^{\prime}: S \cap F \neq \emptyset\right\}$
- Crucial optimization: only construct states that are reachable from s^{\prime}
- Less crucial, still important: minimize DFA (Hopcroft's algorithm, $O(n \log n)$)

Lexical specification \rightarrow String classifier

- Want: partial function match mapping strings to token types
- match $(s)=$ highest-priority token type whose pattern matches s (undef otherwise)
- Process:
(1) Convert each pattern to an NFA. Label accepting states w/ token types.
(2) Take the union of all NFAs
(3) Convert to DFA
- States of the DFA labeled with sets of token types.
- Take highest priority.

$$
\begin{aligned}
\text { identifier } & =[a-z A-Z][a-z A-Z 0-9]^{*} \\
\text { integer } & =[1-9][0-9]^{*} \\
\text { float } & =\left([1-9][0-9]^{*} \mid 0\right) \cdot[0-9]^{+}
\end{aligned}
$$

