Lexing
Compiler phases (simplified)

Source text → Lexing → Token stream → Parsing → Abstract syntax tree → Translation → Intermediate representation → Optimization → Code generation → Assembly
• The **lexing** (or *lexical analysis*) phase of a compiler breaks a stream of characters (source text) into a stream of *tokens*.
 - Whitespace and comments often discarded

• A *token* is a sequence of characters treated as a unit. Each token is associated with a *token type*:
 - *identifier tokens*: `x`, `y`, `foo`, ...
 - *integer tokens*: `0`, `1`, `-14`, `512`, ...
 - *if tokens*: `if`
 - ...

• Algebraic datatypes are a convenient representation for tokens

```
type  token = IDENT of string
        | INT of int
        | IF
        | ...
```
// compute absolute value
if (x < 0) {
 return -x;
} else {
 return x;
}
Implementing a lexer

- Option 1: write by hand
- Option 2: use a lex
er generator
 - Write a \textit{lexical specification} in a domain-specific language
 - Lexer generator compiles specification to a lexer (in language of choice)
- Many lexer generators available
 - lex, flex, ocamllex, jflex, ...
Formal Languages

- An **alphabet** Σ is a finite set of symbols (e.g., \{0, 1\}, ASCII, unicode, tokens).
- A **word** (or **string**) over Σ is a finite sequence $w = w_1 w_2 w_3 \ldots w_n$, with each $w_i \in \Sigma$.
 - The empty word ϵ is a word over any alphabet.
 - The set of all words over Σ is typically denoted Σ^*.
 - E.g., $01001 \in \{0, 1\}^*$, $\text{covfefe} \in \{a, \ldots, z\}^*$.
- A **language** over Σ is a set of words over Σ.
 - Integer literals form a language over $\{0, \ldots, 9, -\}$.
 - The keywords of OCaml form a (finite) language over ASCII.
 - Syntactically-valid Java programs forms an (infinite) language over Unicode.
Regular expressions (regex)

- Regular expressions are one mechanism for describing languages.
- Abstract syntax of regular expressions:

\[
\begin{align*}
\text{<RegExp>} & ::= \epsilon & \text{Empty word} \\
& \mid \Sigma & \text{Letter} \\
& \mid <\text{RegExp}> <\text{RegExp}> & \text{Concatenation} \\
& \mid <\text{RegExp}> | <\text{RegExp}> & \text{Alternative} \\
& \mid <\text{RegExp}>^* & \text{Repetition}
\end{align*}
\]
Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
- Abstract syntax of regular expressions:

 \[
 \langle \text{RegExp} \rangle ::= \epsilon \quad \text{Empty word}
 \ |
 \Sigma \quad \text{Letter}
 \ |
 \langle \text{RegExp} \rangle \langle \text{RegExp} \rangle \quad \text{Concatenation}
 \ |
 \langle \text{RegExp} \rangle | \langle \text{RegExp} \rangle \quad \text{Alternative}
 \ |
 \langle \text{RegExp} \rangle ^* \quad \text{Repetition}
 \]

- Meaning of regular expressions:

 \[\mathcal{L}(\epsilon) = \{\epsilon\}\]
 \[\mathcal{L}(a) = \{a\}\]
 \[\mathcal{L}(R_1 R_2) = \{uv : u \in \mathcal{L}(R_1) \land v \in \mathcal{L}(R_2)\}\]
 \[\mathcal{L}(R_1 | R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)\]
 \[\mathcal{L}(R^*) = \{\epsilon\} \cup \mathcal{L}(R) \cup \mathcal{L}(RR) \cup \mathcal{L}(RRR) \cup \ldots\]
ocamllex regex concrete syntax

- 'a': letter
- "abc": string (equiv. ’a”b”c’)
- R+: one or more repetitions of R (equiv. RR*)
- R?: zero or one R (equiv. R | ε)
- [’a’–’z’]: character range (equiv. ’a’ | ’b’ | ... | ’z’)
- R as x: bind string matched by R to variable x
Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification

Example lexical specification:

```
<table>
<thead>
<tr>
<th>token type</th>
<th>pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>identifier</td>
<td></td>
</tr>
</tbody>
</table>

\[a-zA-Z0-9]\* |
| integer     | \[1-9]\[0-9]\* |
| plus        | + |
```

Typically, lexical spec associates an action to each token type, which is code that is evaluated on the lexeme (often: produce a token value)
Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification

Example lexical specification:

```
token type

identifier = \[a - zA - Z][a - zA - Z0 - 9]^*
integer = \[1 - 9][0 - 9]^*
plus = +
```

- “foo+42+bar” → **identifier** “foo”, **plus “+”, integer “42”,** **plus “+”, identifier “bar”**

• token type • lexeme
Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification.

Example lexical specification:

- **identifier** = \([a-zA-Z0-9]*\)
- **integer** = \([1-9][0-9]*\)
- **plus** = \(+\)

- “foo+42+bar” → identifier “foo”, plus “+”, integer “42”, plus “+”, identifier “bar”

- Typically, lexical spec associates an **action** to each token type, which is code that is evaluated on the lexeme (often: produce a token value)
Disambiguation

• May be more than one way to lex a string:

\[
\begin{align*}
IF &= \text{if} \\
IDENT &= [a-zA-Z][a-zA-Z0-9]^* \\
INT &= [1-9][0-9]^* \\
LT &= < \\
\ldots
\end{align*}
\]

• Input string ifx<10: IDENT “ifx”, LT, INT 10 or IF, IDENT “x”, LT, INT 10?
• Input string if x<9: IF, IDENT “x”, LT, INT 9 or IDENT “if”, IDENT “x”, LT, INT 9?
Disambiguation

• May be more than one way to lex a string:

\[
IF = \text{if} \\
IDENT = [a-zA-Z][a-zA-Z0-9]^* \\
INT = [1-9][0-9]^* \\
LT = <
\]

...

• Input string if x<10: \text{IDENT “ifx”, LT, INT 10} or \text{IF, IDENT “x”, LT, INT 10}?

• Input string if x<9: \text{IF, IDENT “x”, LT, INT 9} or \text{IDENT “if”, IDENT “x”, LT, INT 9}?

• The lexer is greedy: always prefer longest match

• Order matters: prefer earlier patterns
 Lexer generator pipeline

- Lexical specification is compiled to a *deterministic finite automaton* (DFA), which can be executed efficiently
- Typical pipeline: lexical specification \rightarrow *nondeterministic FA* \rightarrow DFA
- Kleene's theorem: regular expressions, NFAs, and DFAs describe the same class of languages
 - A language is *regular* if it is accepted by a regular expression (equiv., NFA, DFA).
A **deterministic finite automaton** (DFA) $A = (Q, \Sigma, \delta, s, F)$ consists of

- Q: finite set of states
- Σ: finite alphabet
- $\delta : Q \times \Sigma \rightarrow Q$: transition function
 - Every state has *exactly* one outgoing edge per letter
- $s \in Q$: initial state
- $F \subseteq Q$: final states

DFA accepts a string $w = w_1 \ldots w_n \in \Sigma^*$ iff $\delta(...\delta(\delta(s, w_1), w_2), ..., w_n) \in F$.
A non-deterministic finite automaton (NFA) $A = (Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$: transition relation
 - A state can have more than one outgoing edge for a given letter
 - A state can have no outgoing edges for a given letter
 - A state can have ϵ-transitions (read no input, but change state)
A non-deterministic finite automaton (NFA) $A = (Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$: transition relation
 - A state can have more than one outgoing edge for a given letter
 - A state can have no outgoing edges for a given letter
 - A state can have ϵ-transitions (read no input, but change state)

NFA accepts a string $w = w_1...w_n \in \Sigma^*$ iff there exists a w-labeled path from q_0 to an accepting state (i.e., there is some sequence $(q_0, u_1, q_1), (q_1, u_2, q_2), \ldots, (q_{m-1}, u_m, q_m)$ with $q_0 = s, q_m \in F$, and $u_1u_2...u_m = w$.
Case: ϵ (empty word)
Regex \rightarrow NFA

Case: a (letter)

\[\text{start} \xrightarrow{a} s_0 \xrightarrow{a} s_f \]
Case: $R_1 R_2$ (concatenation)
Case: $R_1 R_2$ (concatenation)
Case: $R_1 | R_2$ (alternative)
Case: $R_1 | R_2$ (alternative)
Case: R^* (iteration)
Case: R^* (iteration)
• For any NFA, there is a DFA that recognizes the same language

• Intuition: the DFA simulates all possible paths of the NFA simultaneously
 • There is an unbounded number of paths but we only care about the “end state” of each path, not its history
 • States of the DFA track the set of possible states the NFA could be in
 • DFA accepts when some path accepts
NFA → DFA

\[
\begin{align*}
\text{start} & \rightarrow s_0 \\
& \quad \rightarrow s_1 \quad a \\
& \quad \rightarrow s_2 \quad a \\
& \quad \rightarrow s_f \quad \epsilon
\end{align*}
\]
NFA \rightarrow DFA

Diagram of an NFA and its corresponding DFA.
NFA → DFA

\begin{align*}
\text{start} & \quad s_0 \quad s_1 \quad s_2 \quad s_f \\
& \quad \quad \quad \quad a \quad a \quad \epsilon \\
& \quad \quad \quad \quad b \quad b
\end{align*}
NFA \rightarrow DFA
NFA → DFA
NFA \rightarrow DFA
NFA \rightarrow DFA

\begin{center}
\begin{tikzpicture}

\node[state,initial] (s0) at (0,0) {s_0};
\node[state] (s1) at (3,0) {s_1};
\node[state] (s2) at (6,0) {s_2};
\node[state,accepting] (sf) at (9,0) {sf};
\node[state] (0) at (6,-3) {\emptyset};

\path[->]
(s0) edge node {a} (s1)
(s1) edge node {a} (s2)
(s2) edge node {ϵ} (sf)
(s0) edge[loop below] node {b} (s0)
(0) edge[loop above] node {a} (0)
(0) edge node {b} (s1)
(s1) edge node {b} (0)
(s1) edge[loop below] node {a} (s1);

\end{tikzpicture}
\end{center}
NFA \rightarrow DFA
NFA \rightarrow DFA

![Diagram of an NFA and its equivalent DFA](image-url)
NFA \rightarrow DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)

 ϵ-$cl(S) = \text{smallest set that contains } S \text{ and such that } \forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S$
NFA \rightarrow DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)

 ϵ-$cl(S) =$ smallest set that contains S and such that $\forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S$
- Construct DFA as follows:
 - $Q' =$ set of all ϵ-closed subsets of Q
 - $\delta'(S, a) =$ ϵ-closure of $\{q_2 : \exists q_1 \in S. (q_1, a, q_2) \in \Delta\}$
 - $s' =$ ϵ-closure of $\{s\}$
 - $F' =$ $\{S \in Q' : S \cap F \neq \emptyset\}$
NFA → DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
 ϵ-$cl(S) =$ smallest set that contains S and such that $\forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S$
- Construct DFA as follows:
 - $Q' =$ set of all ϵ-closed subsets of Q
 - $\delta'(S, a) =$ ϵ-closure of$\{q_2 : \exists q_1 \in S. (q_1, a, q_2) \in \Delta\}$
 - $s' =$ ϵ-closure of $\{s\}$
 - $F' =$ $\{S \in Q' : S \cap F \neq \emptyset\}$
- Crucial optimization: only construct states that are reachable from s'
NFA \rightarrow DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
 ϵ-cl$(S) =$ smallest set that contains S and such that $\forall (q, \epsilon, q') \in \Delta$, $q \in S \Rightarrow q' \in S$
- Construct DFA as follows:
 - $Q' =$ set of all ϵ-closed subsets of Q
 - $\delta'(S, a) =$ ϵ-closure of $\{q_2 : \exists q_1 \in S. (q_1, a, q_2) \in \Delta\}$
 - $s' =$ ϵ-closure of $\{s\}$
 - $F' = \{S \in Q' : S \cap F \neq \emptyset\}$
- Crucial optimization: only construct states that are reachable from s'
- Less crucial, still important: minimize DFA (Hopcroft’s algorithm, $O(n \log n)$)
Lexical specification → String classifier

• Want: partial function *match* mapping strings to token types
 • \(\text{match}(s) = \text{highest-priority token type whose pattern matches } s \) (undef otherwise)

• Process:
 1. Convert each pattern to an NFA. Label accepting states w/ token types.
 2. Take the union of all NFAs
 3. Convert to DFA
 • States of the DFA labeled with sets of token types.
 • Take highest priority.

\[
\begin{align*}
\text{identifier} &= [a - zA - Z][a - zA - Z0 - 9]^* \\
\text{integer} &= [1 - 9][0 - 9]^* \\
\text{float} &= ([1 - 9][0 - 9]^*|0).[0 - 9]^+
\end{align*}
\]
\(\{i_0, n_0, f_0\}\)
The image contains a diagram with nodes and edges. The nodes are labeled with sets such as \(\{i_0, n_0, f_0\} \), \(\{i_1\} \), \(\{n_1, f_1\} \), and \(\{f_2\} \). The edges are labeled with characters from \([a-zA-Z0-9] \) and \([1-9] \). The diagram includes arrows indicating transitions between these sets. The diagram also includes labels such as "identifier" and "float".
\[[a - zA - Z0 - 9] \]

Diagram:

- **Node \(\{i_0, n_0, f_0\} \):**
 - Input: \([1 - 9] \)
 - Output: \([0 - 9] \)
- **Node \(\{i_1\} \):**
 - Input: \([a - zA - Z] \)
 - Output: \(\{f_1\} \)
- **Node \(\{f_1\} \):**
 - Input: \(0 \)
 - Output: \(\{f_2\} \)
- **Node \(\{n_1, f_1\} \):**
 - Input: \([0 - 9] \)
 - Output: \(\text{int} \)
- **Node \(\{f_2\} \):**
 - Input: \([0 - 9] \)
 - Output: \(\text{float} \)

Identifiers:
- **identifier**
- **int**
- **float**