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• HW5 is due on Dean’s date, 5pm.
• After this week, drop in office hours 3-4pm on Wednesday, appointments on WASE.
• Final exam

• Released 9am on May 14, must be submitted by 5pm on May 15th.
• No time limit. Expected time is 2 hours
• Open book, open notes, computer allowed. No collaboration.
• Some programming questions – make sure to have a working OCaml installation.
• Ask questions using private posts on Piazza
• Mostly material since the midterm. Topics:

• Type systems (be comfortable reading inference rules, writing proof trees)
• Data flow analysis (translate a global specification into local constraints)
• Register allocation (graph coloring, coalescing)
• Control flow analysis (dominators, loops, SSA conversion)



Review
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Software engineering

• Compilers are large software projects
• Decompose the problem into lots of small phases, each of which accomplishes one thing
• E.g., the optimization phase is also a large piece of software – it too is composed of lots of

small individual phases
• Many problems do not have a “right” answer: pick a convention, document it well, and

adhere to it.
• E.g., calling conventions, pass environment as first argument to a closure, ...



Intermediate representations

• An IR breaks code generation up into two phases. Simpler & easier to implement
• IRs (such as SSA) can drastically simplify optimization
• Makes compiler back-end re-usable
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Lexing and parsing

• The lexing phase of a compiler breaks a stream of characters (source text) into a stream of
tokens

• The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

• Lexing and parsing are based on automata
• Lexing: finite automata (DFAs, NFAs)
• Parsing: (deterministic) pushdown automata

• Useful tool to have in your toolbox!
• Parsing useful for programming languages, domain specific languages, custom data formats,

...
• Lexer generators: lex, flex, ocamllex, jflex
• Parser generators: Yacc, Bison, ANTLR, menhir
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Type Systems

• Specified by inference rules

J1 J2 · · · Jn

J
Side-condition

• Succinct way to communicate a precise specification
• Pervasive in formal logic and programming language theory. Can be used to specify

• the semantics of programming languages
• logics for reasoning about programs
• program analyses
• ...

• Type theory is a large subject and an active area of research
• Close ties to logic (Curry-Howard correspondence: formulas are types, programs are proofs)
• More in COS 510
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Dataflow analysis

• Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses

• Define a system of inequations {Xi ⊒ Ri}i∈I, where “unknowns” Xi are values in some
partially orderd set, and right-hand-sides are monotone expressions over unknowns

• Solve the system by repeatedly:
1 Choosing a constraint Xj ⊒ Rj that is not satisfied
2 Increasing Xj so that the constraint is satisfied

until all constraints are satified

• Idea: can sometimes transform a global specification into a system of local constraints,
which can be solved iteratively
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LL parsing revisited

• LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications

• Fix a grammar G = (N,Σ,R,S)
• For any word γ ∈ (N ∪ Σ)∗, define first(γ) = {a ∈ Σ : γ ⇒∗ aw}
• For any word γ ∈ (N ∪ Σ)∗, say that γ is nullable if γ ⇒∗ ϵ
• For any non-terminal A, define follow(A) = {a ∈ Σ : ∃γ, γ′.S ⇒ γAaγ′}

• nullable : N → {true, false} (w/ false ⊑ true) is the least function such that
• For each rule A ::= γ1...γn, nullable(A) ⊒ nullable(γ1) ∧· · · ∧ nullable(γ1)

• first is the smallest function such that
• For each a ∈ Σ, first(a) = {a}
• For each A ::= γ1...γi...γn ∈ R, with γ1, ..., γi−1 nullable, first(A) ⊇ first(γi)

• follow is the smallest function such that
• For each A ::= γ1...γi...γn ∈ R, with γi+1, ..., γn nullable, follow(γi) ⊇ follow(A)
• For each A ::= γ1...γi...γj...γn ∈ R, with γi+1, ..., γj−1 nullable, follow(γi) ⊇ first(A)
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Current research



Conferences

• Programming Language Design and Implementation (PLDI)
• Principles of Programming Languages (POPL)
• Object Oriented Programming Systems, Languages & Applications (OOPSLA)
• Principles and Practice of Parallel Programming (PPoPP)
• Code Generation and Optimization (CGO)
• Compiler Construction (CC)
• International Conference on Functional Programming (ICFP)
• European Symposium on Programming (ESOP)
• Architectural Support for Programming Languages and Operating Systems (ASPLOS)



The job of a compiler is to translate from the syntax of one language to another, but pre-
serve the semantics.

Source program Target program

Result Result

compile

equal

execute execute

• Compiler correctness is critical
• Trustworthiness of every component built in a compiled language depends on

trustworthiness of the compiler

• Compilers tend to be well-engineered and well-tested, but that does not mean bug-free
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Bug-finding in compilers

• CSmith1: randomized differential testing of C compilers
• Randomly generate a C program without undefined behavior

• Integrates program analysis to find interesting test cases
• Compile with several different compilers
• Compare the results

• Over 3 years found several real bugs
• 79 bugs in GCC (25 maximum-priority/release-blocking)
• 202 bugs in LLVM

1Yang et al. Finding and Understanding Bugs in C Compilers, PLDI 2011



Verified compilation

• CompCert: (Xavier Leroy, primary developer of OCaml)
• Optimizing C compiler, implemented and proved correct in the Coq proof assistant
• Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent

– Yang et al. Finding and Understanding Bugs in C Compilers, 2011

• At Princeton: CertiCoq (Andrew Appel)
• CompCert is implemented the proof assistant Coq... but why should we trust the Coq

compiler?
• CertiCoq is an optimizing compiler for Coq, implemented and verified in Coq.
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Automatic parallelization

• Moore’s law: processor advances double speed every 18 months

• Moore’s law ended in 2006 for single-threaded applications
• Started to hit fundamental limits in how small transistors can be

• Processor manufacturers shifted to multi-core processors
• Need new compiler technology to take advantage of multi-core – automatically find and

exploit opportunities for parallel execution
• At Princeton: David August’s parallelization project

https://liberty.princeton.edu/Projects/AutoPar/
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Program synthesis

• Verification: Given a program and a specification, prove that the program satisfies the
specification

• Synthesis: Given a specification, find a program that satisfies the specification
• Superoptimization: find the least costly sequence of instructions that is equivalent to a

given sequence
• Specification is a program, but used as a black box
• Solved by exhaustive search
• Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)

• At Princeton: Synthesizing Lenses (David Walker), synthesis via logical games (Z)
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Program analysis
• The goal of a program analysis is to answer questions about the run-time behavior of

software
• In compilers: data flow analysis, control flow analysis
• Typical goal: determine whether an optimization is safe

• Research in program analysis has shifted to more sophisticated properties
• Numerical analyses – e.g., find geometric regions that contain reachable values for integer

variables. Can be used to verify absence of buffer overflows, divide-by-zero, ....
• Shape analyses – determine whether a data structure in the heap is a list, a tree, a graph, ...

Can be used to verify memory safety.
• Resource analyses – e.g., find a conservative upper bound on the run-time complexity of a

loop. Can be used to find timing side-channel attacks.
• Industrial program analysis

• Static Driver Verifier (Microsoft): finds bugs in device driver code
• Infer (Facebook): proves memory safety & finds race conditions
• Astrée (AbsInt): static analyzer for safety-critcal embedded code (e.g., automotive &

aerospace applications)
• Several commerical static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...
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Program analysis at Princeton

• Synthesis, Learning, and Verification project (Aarti Gupta)
• Idea: learn program invariants, termination arguments, etc from data

• My work:
• Compositional program analysis

• Program analyses typically work by propagating information forwards through a program
• Compositional analysis: Analyze the program by breaking it into parts, analyzing each part, and

then combining the results
• Understandable program analysis

• Program analyzers rely on heuristics for predicting program behavior. Can be brittle and have
unexpected behavior.

• Software developers should be able to predict how a change in their program affects the results of
an analysis

http://www.cs.princeton.edu/~aartig/projs.html
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What next?

• COS 375: Computer Architecture and Organization
• COS 326: Functional Programming
• COS 510: Programming Languages
• COS 516: Automated Reasoning about Software



Thanks!


