COS3820: Compiling Techniques

Zak Kincaid

April 30, 2020

* HWS5 is due on Dean’s date, 5pm.
* After this week, drop in office hours 3-4pm on Wednesday, appointments on WASE.

® Final exam

Released 9am on May 14, must be submitted by 5pm on May 15th.
No time limit. Expected time is 2 hours
Open book, open notes, computer allowed. No collaboration.
Some programming questions - make sure to have a working OCaml installation.
Ask questions using private posts on Piazza
Mostly material since the midterm. Topics:
® Type systems (be comfortable reading inference rules, writing proof trees)
® Data flow analysis (translate a global specification into local constraints)
® Register allocation (graph coloring, coalescing)
® Control flow analysis (dominators, loops, SSA conversion)

Review

Compiler phases (simplified)

Lexing
A\ 4

Parsing

i
Y

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

Software engineering

e Compilers are large software projects
® Decompose the problem into lots of small phases, each of which accomplishes one thing
® E.g, the optimization phase is also a large piece of software - it too is composed of lots of
small individual phases
* Many problems do not have a “right” answer: pick a convention, document it well, and
adhere to it.

® E.g, calling conventions, pass environment as first argument to a closure, ...

Intermediate representations

* An IR breaks code generation up into two phases. Simpler & easier to implement
* IRs (such as SSA) can drastically simplify optimization
* Makes compiler back-end re-usable

Swift MIPS

Lexing and parsing

¢ The lexing phase of a compiler breaks a stream of characters (source text) into a stream of
tokens

® The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

Lexing and parsing

¢ The lexing phase of a compiler breaks a stream of characters (source text) into a stream of
tokens

® The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).
¢ Lexing and parsing are based on automata
® Lexing: finite automata (DFAs, NFAs)
® Parsing: (deterministic) pushdown automata

Lexing and parsing

The lexing phase of a compiler breaks a stream of characters (source text) into a stream of
tokens

The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

Lexing and parsing are based on automata
® Lexing: finite automata (DFAs, NFAs)
® Parsing: (deterministic) pushdown automata

Useful tool to have in your toolbox!
® Parsing useful for programming languages, domain specific languages, custom data formats,

® Lexer generators: lex, flex, ocamllex, jflex
® Parser generators: Yacc, Bison, ANTLR, menhir

Type Systems

e Specified by inference rules

J1 Jo

n
SIDE-CONDITION

® Succinct way to communicate a precise specification

® Pervasive in formal logic and programming language theory. Can be used to specify
® the semantics of programming languages
® logics for reasoning about programs

® program analyses
°

Type Systems

e Specified by inference rules

J1 Jo

n
SIDE-CONDITION

® Succinct way to communicate a precise specification

® Pervasive in formal logic and programming language theory. Can be used to specify
® the semantics of programming languages
® logics for reasoning about programs

® program analyses
°

* Type theory is a large subject and an active area of research

¢ Close ties to logic (Curry-Howard correspondence: formulas are types, programs are proofs)
® Morein COS 510

Dataflow analysis

¢ Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses

Dataflow analysis

¢ Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
® Define a system of inequations {X; J R;};c;, where “unknowns” X are values in some
partially orderd set, and right-hand-sides are monotone expressions over unknowns

Dataflow analysis

¢ Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
® Define a system of inequations {X; J R;};c;, where “unknowns” X are values in some
partially orderd set, and right-hand-sides are monotone expressions over unknowns
® Solve the system by repeatedly:
@ Choosing a constraint X; J R; that is not satisfied
@ Increasing X; so that the constraint is satisfied

until all constraints are satified

Dataflow analysis

¢ Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
® Define a system of inequations {X; J R;};c;, where “unknowns” X are values in some
partially orderd set, and right-hand-sides are monotone expressions over unknowns
® Solve the system by repeatedly:
@ Choosing a constraint X; J R; that is not satisfied
@ Increasing X; so that the constraint is satisfied

until all constraints are satified

* |dea: can sometimes transform a global specification into a system of local constraints,
which can be solved iteratively

LL parsing revisited

® LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications
® Fixagrammar G = (N,%, R, 5)
® Foranywordy € (NU X)*, define first(y) = {a € ¥ : v =" aw}
® Foranywordy € (NUX)*, say that v is nullable if v = ¢
* For any non-terminal 4, define follow(A) = {a € ¥ : Iv,7.5 = vAay'}

LL parsing revisited

® LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications
® Fixagrammar G = (N,%, R, 5)
® Foranywordy € (NU X)*, define first(y) = {a € ¥ : v =" aw}
® Foranywordy € (NUX)*, say that v is nullable if v = ¢
* For any non-terminal 4, define follow(A) = {a € ¥ : Iv,7.5 = vAay'}
e nullable: N — {true, false} (w/ false C true) is the least function such that
® Foreach rule A ::= ~;...7,, nullable(A) 3 nullable(y;) A- - - A nullable(v;)

LL parsing revisited

® LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications
® Fixagrammar G = (N, X, R, S)
® Foranywordy € (NU X)*, define first(y) = {a € ¥ : v =" aw}
® Foranywordy € (NUX)*, say that v is nullable if v = ¢
* For any non-terminal 4, define follow(A) = {a € ¥ : Iv,7.5 = vAay'}
e nullable: N — {true, false} (w/ false C true) is the least function such that
® Foreach rule A ::= ~;...7,, nullable(A) 3 nullable(y;) A- - - A nullable(v;)
e first is the smallest function such that

® Foreach a € 3, first(a) = {a}
® Foreach A ::=7y...v;..7, € R, with v1, ..., y;—1 nullable, first(A) D first(~,)

LL parsing revisited

LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications

® Fixagrammar G = (N, X, R, S)

® Foranywordy € (NU X)*, define first(y) = {a € ¥ : v =" aw}

® Foranywordy € (NUX)*, say that v is nullable if v = ¢

* For any non-terminal 4, define follow(A) = {a € ¥ : Iv,7.5 = vAay'}
nullable : N — {true, false} (w/ false C true) is the least function such that

® Foreach rule A ::= ~;...7,, nullable(A) 3 nullable(y;) A- - - A nullable(v;)
first is the smallest function such that

® Foreach a € 3, first(a) = {a}

® Foreach A ::=7y...v;..7, € R, with v1, ..., y;—1 nullable, first(A) D first(~,)
follow is the smallest function such that

® Foreach A ::=~;...v;..7n € R, with vy;11, ..., 7, nullable, follow(~,;) D follow(A)
® Foreach A ::=v1..v;..9j...%, € R, with 41, ..., v;—1 nullable, follow(~;) D first(A)

Current research

Conferences

Programming Language Design and Implementation (PLDI)

Principles of Programming Languages (POPL)

Object Oriented Programming Systems, Languages & Applications (OOPSLA)
Principles and Practice of Parallel Programming (PPoPP)

Code Generation and Optimization (CGO)

Compiler Construction (CC)

International Conference on Functional Programming (ICFP)

European Symposium on Programming (ESOP)

Architectural Support for Programming Languages and Operating Systems (ASPLOS)

The job of a compiler is to translate from the syntax of one language to another, but pre-
serve the semantics.

compile

Source program 4 Target program
execute execute

| Result ERERECICRREE Result |

The job of a compiler is to translate from the syntax of one language to another, but pre-
serve the semantics.

compile
Source program 4 Target program
execute execute

| Result ERERECICRREE Result |

e Compiler correctness is critical

¢ Trustworthiness of every component built in a compiled language depends on
trustworthiness of the compiler

The job of a compiler is to translate from the syntax of one language to another, but pre-
serve the semantics.

compile

Source program 4 Target program
execute execute

| Result ERERECICRREE Result |

e Compiler correctness is critical

¢ Trustworthiness of every component built in a compiled language depends on
trustworthiness of the compiler

¢ Compilers tend to be well-engineered and well-tested, but that does not mean bug-free

Bug-finding in compilers

e CSmith': randomized differential testing of C compilers
® Randomly generate a C program without undefined behavior
® Integrates program analysis to find interesting test cases
¢ Compile with several different compilers
® Compare the results
e Over 3 years found several real bugs

® 79 bugs in GCC (25 maximume-priority/release-blocking)
® 202 bugs in LLVM

'Yang et al. Finding and Understanding Bugs in C Compilers, PLDI 2011

Verified compilation

e CompCert: (Xavier Leroy, primary developer of OCaml)

® Optimizing C compiler, implemented and proved correct in the Coq proof assistant
® Coq proof assistant an (essentially) implementation of a sophisticated type system (ColC)

The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent
- Yang et al. Finding and Understanding Bugs in C Compilers, 2011

Verified compilation

e CompCert: (Xavier Leroy, primary developer of OCaml)

® Optimizing C compiler, implemented and proved correct in the Coq proof assistant
® Coq proof assistant an (essentially) implementation of a sophisticated type system (ColC)

The striking thing about our CompCert results is that the middle-end bugs we found in all

other compilers are absent
- Yang et al. Finding and Understanding Bugs in C Compilers, 2011

¢ At Princeton: CertiCoq (Andrew Appel)
® CompCert is implemented the proof assistant Coq... but why should we trust the Coq
compiler?
¢ CertiCoq is an optimizing compiler for Cog, implemented and verified in Coq,.

Automatic parallelization

® Moores law: processor advances double speed every 18 months

https://liberty.princeton.edu/Projects/AutoPar/

Automatic parallelization

® Moores law: processor advances double speed every 18 months
* Moore's law ended in 2006 for single-threaded applications
® Started to hit fundamental limits in how small transistors can be

® Processor manufacturers shifted to multi-core processors

https://liberty.princeton.edu/Projects/AutoPar/

Automatic parallelization

Moores law: processor advances double speed every 18 months
Moore's law ended in 2006 for single-threaded applications
® Started to hit fundamental limits in how small transistors can be

Processor manufacturers shifted to multi-core processors

Need new compiler technology to take advantage of multi-core - automatically find and
exploit opportunities for parallel execution

At Princeton: David August’s parallelization project

https://liberty.princeton.edu/Projects/AutoPar/

Program synthesis

e Verification: Given a program and a specification, prove that the program satisfies the
specification

Program synthesis

e Verification: Given a program and a specification, prove that the program satisfies the
specification
e Synthesis: Given a specification, find a program that satisfies the specification

Program synthesis

e Verification: Given a program and a specification, prove that the program satisfies the
specification
e Synthesis: Given a specification, find a program that satisfies the specification
e Superoptimization: find the least costly sequence of instructions that is equivalent to a
given sequence
® Specification is a program, but used as a black box

® Solved by exhaustive search
® Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)

Program synthesis

Verification: Given a program and a specification, prove that the program satisfies the
specification
Synthesis: Given a specification, find a program that satisfies the specification
Superoptimization: find the least costly sequence of instructions that is equivalent to a
given sequence

® Specification is a program, but used as a black box

® Solved by exhaustive search
® Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)

At Princeton: Synthesizing Lenses (David Walker), synthesis via logical games (Z)

Program analysis

® The goal of a program analysis is to answer questions about the run-time behavior of
software
® In compilers: data flow analysis, control flow analysis
® Typical goal: determine whether an optimization is safe

Program analysis

® The goal of a program analysis is to answer questions about the run-time behavior of
software
® In compilers: data flow analysis, control flow analysis
® Typical goal: determine whether an optimization is safe
¢ Research in program analysis has shifted to more sophisticated properties
® Numerical analyses - e.g., find geometric regions that contain reachable values for integer
variables. Can be used to verify absence of buffer overflows, divide-by-zero,
® Shape analyses - determine whether a data structure in the heap is a list, a tree, a graph, ...
Can be used to verify memory safety.
® Resource analyses - e.g,, find a conservative upper bound on the run-time complexity of a
loop. Can be used to find timing side-channel attacks.

Program analysis

® The goal of a program analysis is to answer questions about the run-time behavior of
software
® In compilers: data flow analysis, control flow analysis
® Typical goal: determine whether an optimization is safe
¢ Research in program analysis has shifted to more sophisticated properties
® Numerical analyses - e.g., find geometric regions that contain reachable values for integer
variables. Can be used to verify absence of buffer overflows, divide-by-zero,
® Shape analyses - determine whether a data structure in the heap is a list, a tree, a graph, ...
Can be used to verify memory safety.
® Resource analyses - e.g,, find a conservative upper bound on the run-time complexity of a
loop. Can be used to find timing side-channel attacks.
* Industrial program analysis
e Static Driver Verifier (Microsoft): finds bugs in device driver code
¢ |nfer (Facebook): proves memory safety & finds race conditions
® Astrée (AbsInt): static analyzer for safety-critcal embedded code (e.g., automotive &
aerospace applications)
® Several commerical static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...

Program analysis at Princeton

® Synthesis, Learning, and Verification project (Aarti Gupta)
® |dea: learn program invariants, termination arguments, etc from data

http://www.cs.princeton.edu/~aartig/projs.html

Program analysis at Princeton

® Synthesis, Learning, and Verification project (Aarti Gupta)
® |dea: learn program invariants, termination arguments, etc from data
e My work:
® Compositional program analysis
® Program analyses typically work by propagating information forwards through a program
® Compositional analysis: Analyze the program by breaking it into parts, analyzing each part, and
then combining the results
® Understandable program analysis
® Program analyzers rely on heuristics for predicting program behavior. Can be brittle and have
unexpected behavior.
® Software developers should be able to predict how a change in their program affects the results of
an analysis

http://www.cs.princeton.edu/~aartig/projs.html

What next?

COS 375: Computer Architecture and Organization
COS 326: Functional Programming

COS 510: Programming Languages

COS 516: Automated Reasoning about Software

Thanks!

