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Different Flavors of Gradients

1
source: https://www.comp.nus.edu.sg/ cs5240/lecture/matrix-differentiation.pdf
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Challenges of Vector/Matrix Calculus

• Good news: most of the rules you know and

love from single variable calculus generalize

well (not in all cases but in some).

• Bad news: confusing notation (many more

variables lead to very tedious book-keeping)

and more identities to memorize.
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Numerator vs Denominator Layout

• Two main conventions used in vector/matrix

calculus: numerator and denominator layouts.

• Numerator layout makes the dimension of the

derivative be the numerator dimension by

denominator dimension.

• For example, if y is a scalar and x ∈ RN then

∂y

∂x
∈ R1×N
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How to Become a Differentiation Master

1. Identify what is the flavor of your derivative.

2. What is the dimension of the derivative?

3. Identify any differentiation rules you will need

for this case.

4. Can any part of the derivative be reduced to a

particular identity?

5. Identify the partial derivatives.
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Definitions

Names Notation & Expression

Difference Quotient δy
δx = f (x+δx)−f (x)

δx

Derivative df
dx = limh→0

f (x+h)−f (x)
h

Partial Derivative ∂f
∂dxi

= limh→0
f (x1,...,xi+h,...,xn)−f (x)

h

Gradient ∇x f = df
dx =

󰁫
∂f
∂dx1

. . . ∂f
∂dxn

󰁬

Jacobian ∇xf = df (x)
dx =

󰁫
∂f (x)
∂dx1

. . . ∂f (x)
∂dxn

󰁬
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Differentiation Rules (Scalar-Scalar)

• Sum Rule

(f (x) + g(x))′ = f ′(x) + g ′(x)

• Product Rule

(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x)

• Quotient Rule
󰀕
f (x)

g(x)

󰀖′
=

f ′(x)g(x)− f (x)g ′(x)

(g(x))2

• Chain Rule

(g(f (x)))′ = (g ◦ f )′(x) = g ′(f (x))f ′(x) 10



Differentiation Rules (Scalar-Vector)

• Sum Rule

∂

∂x
(f (x) + g(x)) =

∂f

∂x
+

∂g

∂x
• Product Rule

∂

∂x
(f (x)g(x)) =

∂f

∂x
g(x) + f (x)

∂g

∂x
• Chain Rule

∂

∂x
(g(f (x))) =

∂

∂x
(g ◦ f )(x) = ∂g

∂f

∂f

∂x
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Gradient of Matrix Multiplication

Consider the matrix A ∈ RM×N and the vector

x ∈ RN . Define the vector function f (x) = Ax
where f : RN → RM , what is df

dx ?

13



Gradient of Matrix Multiplication cont.

1. Dimension of gradient: df
dx ∈ RM×N

2. One of these M × N partial derivatives will

look like:

fi(x) =
N󰁛

j=1

Aijxj =⇒ ∂fi
∂xj

= Aij

3. Collecting all of these partial derivatives:

df
dx

=

󰀵

󰀹󰀷

∂f1
∂x1

. . . ∂f1
∂xN...
...

∂fM
∂x1

. . . ∂fM
∂xN

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
A11 . . . A1N
...

...

AM1 . . . AMN

󰀶

󰀺󰀸 = A ∈ RM×N
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Chain Rule Example

Consider the scalar function h : R → R where

h(t) = f (g(t)) with f : R2 → R and g : R → R2

such that

f (x) = exp(x1x
2
2 ) ,

x =

󰀥
x1
x2

󰀦
= g(t) =

󰀥
t cos t

t sin t

󰀦
.

What is dh
dt ?
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Chain Rule Example cont.

Even though the gradient is a scalar we need to

compute two vector gradients (gradients) because

of the chain rule:

dh

dt
=

∂f

∂x
∂x
∂t

=
󰁫
∂f
∂x1

∂f
∂x2

󰁬 󰀥∂x1
∂t
∂x2
∂t

󰀦

=
󰁫
exp(x1x

2
2 )x

2
2 2 exp(x1x

2
2 )x1x2

󰁬 󰀥cos t − t sin t

sin t + t cos t

󰀦

= exp(x1x
2
2 )(x

2
2 (cos t − x2) + 2x1x2(sin t + x1)),

where x1 = t cos t and x2 = t sin t
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Least Squares by Chain Rule

Consider the matrix X ∈ RN×D where N > D and

the two vectors y ∈ RN and β ∈ RD . Before we

saw in class that the over-determined system of

linear equations:

y = Xβ

does not always have a solution. Instead of solving

the problem directly we can try to find an

approximate solution β̂.
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Least Squares by Chain Rule cont.

If we picked a random β, and multiplied it by X , we

probably wouldn’t get a vector that was very close

to y . Specifically, the error vector

e(β) = y − Xβ

would probably not be close to the zero vector. A

good choice of β is one that minimizes the

Euclidean distance between y and Xβ. Specifically,

one that minimizes the function L(e) = 󰀂e󰀂2.
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Least Squares by Chain Rule cont.

To find the best β, let’s take the gradient of L with

respect to β and set it equal to zero.

1. ∂L
∂β ∈ R1×D

2. ∂L
∂β = ∂L

∂e
∂e
∂β

3. ∂L
∂ei

= ∂
∂ei

󰁓N
i=1 e

2
i = 2ei . Since,

∂L
∂e ∈ R1×N we

have ∂L
∂e = 2eT

4. ∂e
∂β = −X ∈ RN×D

5. ∂L
∂β = −2eTX = −2(yT − βTXT )X = 0 =⇒
β = (XTX )−1XTy
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