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Matrix Addition

Let X represent a matrix, Xij denote the entry that is in
the ith row and jth column of X .
(A + B)ij = Aij + Bij
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Matrix Multiplication

Let A ∈ Rm×n, B ∈ Rn×k

(AB)ij =
∑n

l=1 AilBlj

In general, matrix multiplication is not commutative.
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Properties of Matrix Multiplication

Associativity:
∀A ∈ Rm×n,B ∈ Rn×p,C ∈ Rp×q :
(AB)C = A(BC )

Distributivity:
∀A,B ∈ Rm×n,C ,D ∈ Rn×p,
(A + B)C = AC + BC ,
A(C + D) = AC + AD
Multiplication By Identity Matrix:
∀A ∈ Rm×n, ImA = AIn = A, where Im is an m×m
matrix such that it has 1s on the diagonal and 0s
everywhere else. It is known as the identity matrix.
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Transpose

AT
ij = Aji

If AT = A, A is known as a symmetric matrix.
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Matrix Transpose Properties

(AT )T = A
(A + B)T = AT + BT

(AB)T = BTAT
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Matrix Inverse

Definition
Consider a square matrix A ∈ Rn×n. Let matrix
B ∈ Rn×n have the property that AB = In = BA. B is
called the inverse of A and is denoted by A−1.
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Matrix Inverse Properties

(A + B)−1 6= A−1 + B−1

(AB)−1 = B−1A−1
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Systems of Linear Equations as Matrices

{
x1 + 0x2 + 8x3 − 4x4 = 42

0x1 + x2 + 2x3 + 12x4 = 8

[
1 0 8 −4
0 1 2 12

]
×


x1
x2
x3
x4

 =

[
42
8

]
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General Approach to Finding Solutions

1. Find a particular solution to Ax = b, where A is a
matrix, x and b are vectors.
2. Find all solutions to Ax = 0.
3. Combine step 1 and 2 to find the general solutions
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Particular Solution

A particular solution to the above system of equations is:

x =


42
8
0
0


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General Solution

Key Idea: Adding 0 to our particular solution does not
change our particular solution.
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General Solution

Express third column using the first two columns[
8
2

]
= 8

[
1
0

]
+ 2

[
0
1

]
.

[
1 0 8 −4
0 1 2 12

] (
λ1


8
2
−1
0


)

= 0
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General Solution

Similarly, express the 4th column using the first two
columns, we get:[

1 0 8 −4
0 1 2 12

] (
λ2


−4
12
0
−1


)

= 0
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General Solution

Putting everything together, we obtain solutions for the
entire system:{

x =


42
8
0
0

+ λ1


8
2
−1
0

+ λ2


−4
12
0
−1

 , λ1, λ2 ∈ R

}
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Row-Echelon Form

Definition
A matrix is in row-echelon form if:

All rows that contain only zeros are at the bottom
of the matrix; correspondingly, all rows that contain
at least one nonzero element are on top of rows
that contain only zeros.

Looking at nonzero rows only, the first nonzero
number from the left pivot (also called the pivot or
the leading coefficient) is always strictly to the right
of the pivot of the row above it.
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Row-Echelon Form

Examples

[
1 0 −1
0 0 0

] [
1 0 2
0 1 2

] [
1 2 3
0 0 1

] 
1 0 2 2
0 1 0 2
0 0 0 1
0 0 0 0


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Reduced Row-Echelon Form

Definition
A matrix is in reduced row-echelon form if

It is in row-echelon form

Every pivot(The first nonzero number from the left
in each row) is 1

The pivot is the only nonzero entry in its column.
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Reduced Row-Echelon Form

Examples1 0 0
0 1 0
0 0 1

 1 3 0 0 3
0 0 1 0 9
0 0 0 1 −4

 [1 0 2
0 1 1

] [
1 0 8 −4
0 1 2 12

]
In general, row-echelon form and reduced row-echelon
form make it easier for us to determine a particular
solution and the general solution. In fact, the matrix we
saw in section 2 is in reduced row-echelon form.
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Elementary Transformations

Given a matrix A, there are three elementary operations
one can perform on A to transform A into reduced
row-echelon form without changing the solution set of
Ax = b.

Exchange Two Rows of a Matrix

Multiplication of a row with a constant λ ∈ R,
where λ 6= 0

Addition of Two Rows
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Gaussian Elimination

Gaussian elimination is an algorithm that performs
elementary transformations to bring a system of linear
equations into reduced row-echelon form.
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Gaussian Elimination


x1 + x2 − x3 = 7

x1 − x2 + 2x3 = 3

2x1 + x2 + x3 = 9

The above system of equations can be represented by

this augmented matrix:

1 1 −1 7
1 −1 2 3
2 1 1 9


We will perform Gaussian Elimination on this system of
equations(Open Ipython Notebook)
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Invert Matrix via Gaussian Elimination

A =


1 0 2 0
1 1 0 0
1 2 0 1
1 1 1 1


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Invert Matrix via Gaussian Elimination

Perform Gaussian Elimination on the following
Augmented Matrix:

1 0 2 0 1 0 0 0
1 1 0 0 0 1 0 0
1 2 0 1 0 0 1 0
1 1 1 1 0 0 0 1


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Invert Matrix via Gaussian Elimination


1 0 0 0 −1 2 −2 2
0 1 0 0 1 −1 2 −2
0 0 1 0 1 −1 1 −1
0 0 0 1 −1 0 −1 2


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Invert Matrix via Gaussian Elimination

A−1 =


−1 2 −2 2
1 −1 2 −2
1 −1 1 −1
−1 0 −1 2


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Justification(Optional)

Each elementary operation on A can be written as left
multiplying A by a matrix. Transforming A to the
identity matrix can be written as: E1E2 · · ·EnA = I .
This implies that E1E2 · · ·EnAA−1 = IA−1 = A−1,
which implies that E1E2 · · ·EnI = A−1. This means
that applying the sequence of elementary operations that
transformed A to the identity matrix on I will transform
I to A−1
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