EXERCISE 1: Minimum Spanning Trees

Each of the figures below represents a partial spanning tree. Determine whether it could possibly be obtained from (a prematurely stopped) Kruskal’s algorithm, (a prematurely stopped) Prim’s algorithm, both or neither.

<table>
<thead>
<tr>
<th></th>
<th>Kruskal</th>
<th>Prim</th>
<th>Both</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>(B)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>(C)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>(D)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
EXERCISE 2: Shortest Common Ancestor

In a directed graph, a vertex x is an ancestor of v if there exists a (directed) path from v to x. Given two vertices v and w in a rooted directed acyclic graph (DAG), a shortest common ancestor $sca(v, w)$ is a vertex x which:

- is an ancestor to both v and w;
- minimizes the sum of the distances from v to x and w to x (this path, which goes from v to x to w, is the shortest ancestral path between v and w).

A. In the following digraph, find the shortest common ancestor of vertices 1 and 4, and give the sum of the path lengths from these vertices to all common ancestors, and then circle the shortest.

![Directed Graph]

B. Describe an algorithm for calculating the shortest common ancestor of two vertices v and w. Your algorithm should run in linear time (proportional to $V + E$).

C. How would your algorithm differ if we are interested in the shortest ancestral path between two sets of vertices A and B instead of two vertices? I.e. between any vertex v in A and any vertex w in B.

In the example, $A = 3, 11$ and $B = 9, 10, 13$. The shortest common ancestor is 5 (between 10 and 11).
EXERCISE 3: Detecting Directed Cycles

A. Consider the graph G given below and the marked vertex s. Show in the given box what the output would be if depthFirstSearch is called on G and s.

B. Consider the following modified version of the dfs method. Explain with the simplest counterexample why this code is not a correct cycle detection code.
C. Briefly describe how depth-first search could be modified to detect cycles in a digraph.

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!” if and only if there is a cycle in the graph. Assume that the graph is connected.

```java
private boolean[] marked;
private boolean[] onStack;

public void checkCycles(Digraph G, int s) {
    marked = new boolean[G.V()];
    ______________________________________
    dfs(G, s);
}

private void dfs(Graph G, int v) {
    marked[v] = true;
    ______________________________________
    for (int w : G.adj(v)) {
        if (!marked[w])
            dfs(G, w);
        else if (_______________________)
            StdOut.print("Cycle found!");
    }
    ______________________________________
}```