COS226 Precept # 7 - Exercises Spring ‘20

Online (auto-graded) version: https://stepik.org/lesson/219467

EXERCISE 1: Minimum Spanning Trees

Each of the figures below represents a partial spanning tree. Determine whether it could possibly be
obtained from (a prematurely stopped) Kruskal’s algorithm, (a prematurely stopped) Prim’s algorithm,
both or neither.

Kruskal Prim Both Neither

15 14 9 13
10 8
3 3 6
(A) 4 1 2 1 O O O O
7 12 11
13 17 6 1
10 8
300 O O O O
B)4| 3 1 2 1
7 11
12
13 17 6 1
9 13
3 6
11
6 1
9 13
3 6
11
6 1

1 O O O O

15 14
10 8
3
(C)4 1 2
7 12
13 17
15 14
10 8
oya] 3 1 2 1 O @) O O
7 12
13 17

https://stepik.org/lesson/219467

EXERCISE 2: Shortest Common Ancestor

In a directed graph, a vertex x is an ancestor of v if there exists a (directed) path from v to x. Given two
vertices v and w in a rooted directed acyclic graph (DAG), a shortest common ancestor sca (v, w) isa
vertex x which:

e isan ancestor to both v and w;
e minimizes the sum of the distances from v to x and w to x (this path, which goes from v to x to

w, is the shortest ancestral path between v and w).

A. In the following digraph, find the shortest common ancestor of vertices 1 and 4, and give the sum of
the path lengths from these vertices to all common ancestors, and then circle the shortest.

) 0*0 (D—©
O

B. Describe an algorithm for calculating the shortest common ancestor of two vertices v and w. Your
algorithm should run in linear time (proportionalto V +E).

C. How would your algorithm differ if we are interested
in the shortest ancestral path between two sets of
vertices 4 and B instead of two vertices? |.e. between
any vertex v in A and any vertex w in B.

In the example, 4 =3,11 and B =9,10,13 . The
shortest common ancestor is 5 (between 10 and 11).

EXERCISE 3: Detecting Directed Cycles

A. Consider the graph G given below and the marked vertex s. Show in the given box what the output
would be if depthFirstSearchiscalledon G and s.

1 | private boolean[] marked;

2

3 | public void depthFirstSearch(Digraph G, int s) {
4 marked = new boolean[G.V()];

5 dfs(G, s);

6|}

7

8 | private void dfs(Digraph G, int v) {

9 marked[v] = true;

10 StdOut.println("Started " v);

11 for (int w : G.adj(v)) {

12 if (!marked[w])

13 dfs(G, w);

14 }

15 StdOut.println("Finished " + v);
16 | }

B. Consider the following modified version of the dfs method. Explain with the simplest counterexample
why this code is not a correct cycle detection code.

private void dfs(Digraph G, int v) {
marked[v] = true;

for (int w : G.adj(v)) {
if (!marked[w])
dfs(G, w);
else StdOut.print("Cycle found!");

W o NGOV, WNBR

C. Briefly describe how depth-first search could be modified to detect cycles in a digraph.

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!” if and only if there is a
cycle in the graph. Assume that the graph is connected.

1 | private boolean[] marked;

2 | private boolean[] onStack;

3

4 | public void checkCycles(Digraph G, int s) {
5 marked = new boolean[G.V()];

6

7 dfs(G, s);

8|}

9

10 | private void dfs(Graph G, int v) {
11 marked[v] = true;
12
13 for (int w : G.adj(v)) {
14 if (!marked[w])
15 dfs(G, w);
16 else if ()
17 StdOut.print("Cycle found!");
18 }
19
20 |}

