

COS226 Precept # 7 - Exercises Spring ‘20

Online (auto-graded) version: https://stepik.org/lesson/219467

EXERCISE 1: Minimum Spanning Trees

Each of the figures below represents a partial spanning tree. Determine whether it could possibly be
obtained from (a prematurely stopped) Kruskal’s algorithm, (a prematurely stopped) Prim’s algorithm,
both or neither.

 Kruskal Prim Both Neither

 O O O O

 O O O O

 O O O O

 O O O O

https://stepik.org/lesson/219467

EXERCISE 2: Shortest Common Ancestor

In a directed graph, a vertex is an ancestor of if there exists a (directed) path from to . Given twox v v x
vertices and in a rooted directed acyclic graph (DAG), a shortest common ancestor sca(v, w) is av w
vertex which:x

● is an ancestor to both and ;v w
● minimizes the sum of the distances from to and to (this path, which goes from to tov x w x v x

, is the shortest ancestral path between and).w v w

A. In the following digraph, find the shortest common ancestor of vertices 1 and 4 , and give the sum of
the path lengths from these vertices to all common ancestors, and then circle the shortest.

B. Describe an algorithm for calculating the shortest common ancestor of two vertices and . Yourv w
algorithm should run in linear time (proportional to).V + E

C. How would your algorithm differ if we are interested
in the shortest ancestral path between two sets of
vertices and instead of two vertices? I.e. betweenA B
any vertex in A and any vertex in B.v w

In the example, and . The, 1A = 3 1 , 0, 3B = 9 1 1
shortest common ancestor is (between and).5 01 11

EXERCISE 3: Detecting Directed Cycles

A. Consider the graph given below and the marked vertex . Show in the given box what the outputG s
would be if depthFirstSearch is called on and .G s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

private boolean[] marked;

public void depthFirstSearch(Digraph G, int s) {
marked = new boolean[G.V()];
dfs(G, s);

}

private void dfs(Digraph G, int v) {
marked[v] = true;
StdOut.println("Started " v);
for (int w : G.adj(v)) {

if (!marked[w])
dfs(G, w);

}

StdOut.println("Finished " + v);
}

B. Consider the following modified version of the dfs method. Explain with the simplest counterexample
why this code is not a correct cycle detection code.

1

2

3

4

5

6

7

8

9

private void dfs(Digraph G, int v) {
marked[v] = true;

for (int w : G.adj(v)) {
if (!marked[w])

dfs(G, w);

else StdOut.print("Cycle found!");
}

}

C. Briefly describe how depth-first search could be modified to detect cycles in a digraph.

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!” if and only if there is a
cycle in the graph. Assume that the graph is connected.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

private boolean[] marked;

private boolean[] onStack;

public void checkCycles(Digraph G, int s) {

marked = new boolean[G.V()];

 dfs(G, s);

}

private void dfs(Graph G, int v) {

marked[v] = true;

for (int w : G.adj(v)) {

if (!marked[w])

 dfs(G, w);

else if (_______________________)

StdOut.print("Cycle found!");

}

}

