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Online (auto-graded) version: https://stepik.org/lesson/219467 

 

EXERCISE 1: Minimum Spanning Trees 

Each of the figures below represents a partial spanning tree. Determine whether it could possibly be 
obtained from (a prematurely stopped) Kruskal’s algorithm, (a prematurely stopped) Prim’s algorithm, 
both or neither. 
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EXERCISE 2: Shortest Common Ancestor 

In a directed graph, a vertex  is an ancestor of  if there exists a (directed) path from  to . Given twox v v x  
vertices  and  in a rooted directed acyclic graph (DAG), a shortest common ancestor sca(v, w)  is av w  
vertex  which:x   

● is an ancestor to both  and ;v w   
● minimizes the sum of the distances from  to  and  to  (this path, which goes from  to  tov x w x v x  

, is the shortest ancestral path between  and ).w v w   

 
A. In the following digraph, find the shortest common ancestor of vertices 1  and 4 , and give the sum of 
the path lengths from these vertices to all common ancestors, and then circle the shortest. 
 

 
 
 
 
 
 
 
 
 
 
 
B. Describe an algorithm for calculating the shortest common ancestor of two vertices  and . Yourv w  
algorithm should run in linear time (proportional to ).V + E  
 
 
 
 
 
 
 
 
 
 
 
C. How would your algorithm differ if we are interested 
in the shortest ancestral path between two sets of 
vertices  and  instead of two vertices? I.e. betweenA B  
any vertex  in A and any vertex  in B.v w   
 
In the example,  and  . The, 1A = 3 1 , 0, 3B = 9 1 1  
shortest common ancestor is  (between  and ).5 01 11  
 
 
 
 
 
 
 
 
 



EXERCISE 3: Detecting Directed Cycles  

A. Consider the graph  given below and the marked vertex . Show in the given box what the outputG s  
would be if depthFirstSearch  is called on   and .G s  
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private boolean[] marked; 
 

public void depthFirstSearch(Digraph G, int s) { 
marked = new boolean[G.V()]; 
dfs(G, s); 

} 

 

private void dfs(Digraph G, int v) { 
marked[v] = true; 
StdOut.println("Started " v);  
for (int w : G.adj(v)) { 

if (!marked[w]) 
dfs(G, w); 

} 

StdOut.println("Finished " + v); 
} 

  

 

        

 

B. Consider the following modified version of the dfs  method. Explain with the simplest counterexample 
why this code is not a correct cycle detection code. 
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private void dfs(Digraph G, int v) { 
marked[v] = true; 
 

for (int w : G.adj(v)) { 
if (!marked[w]) 

dfs(G, w); 

else StdOut.print("Cycle found!"); 
} 

} 

 

 



C. Briefly describe how depth-first search could be modified to detect cycles in a digraph. 

 

 

 

 

 

 

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!”  if and only if there is a 
cycle in the graph. Assume that the graph is connected. 
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private boolean[] marked; 

private boolean[] onStack; 

  

public void checkCycles(Digraph G, int s) { 

marked = new boolean[G.V()]; 

______________________________________ 

 dfs(G, s); 

} 

  

private void dfs(Graph G, int v) { 

marked[v] = true; 

______________________________________ 

for (int w : G.adj(v)) { 

if (!marked[w]) 

 dfs(G, w); 

else if (_______________________) 

StdOut.print("Cycle found!"); 

} 

______________________________________ 

} 

 

 


