

COS226 Precept # 4 - Exercises Spring ‘20

EXERCISE 1: Streaming Median (Midterm Spring ’18)

Assume that your application receives a stream of data and that it should at any point be able to report
what the median of the data received so far is. Design a data type that can support such median queries
on data streams efficiently.

1
2
3
4
5

public class StreamingMedian<ItemType extends Comparable<Item> > {
public StreamingMedian() {...}
public void insert(Item key) {...}

 public ItemType median() {...}
}

Note. The median of a set of elements is the middle element when the elements are considered in sorted
order. If there is an even number of elements, the median is the smaller of the two middle elements. For
example, the median of {1, 2, 3} is 2 and of {1, 2, 3, 4} is 2 .

(a) Describe an implementation that can support the insert() and median() operations in
time, where is the number of elements seen so far. Mention whether your analysis of the
running time is worst-case, amortized or probabilistic.

(b) Describe an implementation that can support the insert() and median() operations in

 time, where is the number of elements seen so far. An amortized bound is fine.

https://www.codecogs.com/eqnedit.php?latex=O(n)%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)%0
https://www.codecogs.com/eqnedit.php?latex=n%0

EXERCISE 2: 8-Puzzle

(a) Complete the following diagram for the neighbors of an 8-puzzle board.

Reminder: The Manhattan distance between any board and the goal board is the sum of the
vertical and horizontal distances of each tile to its goal position. (M=Manhattan Distance)

(b) Assuming that you start at board #1, show the contents of the priority queue after each of the first
4 iterations of removing a board and inserting its neighbors using the A* algorithm.

Assignment Tips (from the Checklist).

● Can I use the expression a == b to check whether two arrays a[] and b[] are equal?
No. That expression checks the two arrays for reference equality (and not whether the two arrays
contain the same sequence of values).

● Can I call Arrays.equals(a, b) to check whether two arrays a[] and b[] are equal? It
depends.
If a[] and b[] are of type int[], then Arrays.equals() works as expected. If a[] and b[] are
of type int[][], then use Arrays.deepEquals().

● How do I implement equals()?
Java has some arcane rules for implementing equals() , discussed on p. 103 of Algorithms, 4th
edition. Note that the argument to equals() is required to be of type Object. For online
examples, see Date.java or Transaction.java.

● How do I return an Iterable<Board>?
Add the items you want to a Stack<Board> or Queue<Board> and return that. For example, see
the keys() method in ArrayST.java. The client should not depend on whether the iterable
returned is a stack or queue (because it could be any iterable).

● I'm getting the right number of moves for puzzle04.txt but the wrong number of moves for
some other puzzles. How might I identify what is going wrong?
Check the detailed trace for puzzle04.txt in the testing section of the Checklist. Even if your
program returns the correct number of moves for this puzzle, the trace might reveal that you are
adding/removing boards in the wrong order.

● I run out of memory when running some of the large sample puzzles. What should I do?
Be sure to ask Java for additional memory, e.g.:

java-algs4 -Xmx1600m PuzzleChecker puzzle36.txt

If your program is unable to solve certain instances, document that in your readme.txt file. You
should expect to run out of memory when using the Hamming priority function. Be sure not to put
the JVM option in the wrong spot or it will be treated as a command-line argument, e.g.:

java-algs4 PuzzleChecker -Xmx1600m puzzle36.txt.

● My program is too slow to solve some of the large sample puzzles, even if given a huge
amount of memory. Is this okay?
You should not expect to solve many of the larger puzzles with the Hamming priority function.
However, you should be able to solve most (but not all) of the larger puzzles with the Manhattan
priority function.

https://algs4.cs.princeton.edu/12oop/Date.java.html
https://algs4.cs.princeton.edu/12oop/Transaction.java.html
https://algs4.cs.princeton.edu/31elementary/ArrayST.java.html

