

COS​226 Precept ​#​ 3 ​-​ Exercises Spring ​‘20

EXERCISE 1: Comparables ​& ​Comparators ​(live-coding)

Download ​precept3.zip​ from the precepts page, unzip the project and open it using IntelliJ. Follow
along with your preceptor (using the annotated code in the next page) to do the following:

(a) Define a ​natural (default)​ comparison behavior for the ​Point2D​ class and use it in a simple test client.
Proceed according to the following steps:

● Modify the class declaration of ​Point2D​ to make it implement the ​Comparable​ interface.

● Implement the ​compareTo​ method. This method allows the point to be compared to another
given point (passed as an argument to the method).

○ Use the ​y-coordinate​ for comparison and break ties using the ​x-coordinate​.
○ Return ​1​ if the point is greater than the method argument, ​-1​ if it is less and ​0​ otherwise.

● Complete the given test program to sort the array according to the natural order defined in the
compareTo​ method.

(b) Define an ​alternate​ comparison behavior for 2D points and use it in a simple test client. Proceed
according to the following steps:

● Uncomment the code marked as​ /* *** PART (B) *** */.

● Complete the implementation of class ​DistanceToOrder​ such that it allows comparing between
two given points based on their distance to a given reference point.

○ Make the class implement the ​Comparator​ interface.
○ Implement the constructor to receive and store the reference point.
○ Implement the ​compare​ method. This method compares the two given argument points:

Returns ​1​ if the first argument is farther from the reference point than the second
argument, ​-1​ if it is closer and ​0​ otherwise.

● Complete the given test program to sort the array according to the distance of the points from the
origin ​(0, 0)​.

public class Point2D implements Comparable<Point2D> {

 private final double x, y;

 public Point2D(double x, double y) {
 this.x = x;
 this.y = y;
 }

 // Returns the square of the Euclidean distance between two points.
 public static double distanceSquared(Point2D p, Point2D q) { … }

 // Compares by y-coordinate, breaking ties by x-coordinate.
 public int compareTo(Point2D other) {
 if (this.y < other.y) return -1;
 if (this.y > other.y) return +1;
 return Double.compare(this.x, other.x);
 }

 // Returns a Comparator for comparing by distance to a reference point.
 public static Comparator<Point2D> distanceToOrder(Point2D ref) {
 return new DistanceToOrder(ref);
 }

 // compare points according to their distance to a reference point.
 private static class DistanceToOrder implements Comparator<Point2D> {
 private Point2D ref;

 private DistanceToOrder(Point2D ref) {
 this.ref = ref;
 }

 public int compare(Point2D p, Point2D q) {
 double dist1 = distanceSquared(p, ref);
 double dist2 = distanceSquared(q, ref);
 return Double.compare(dist1, dist2);
 }
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);

 Point2D[] array = new Point2D[n];
 // … fill the array with random points.

 Arrays.sort(array);
 // … print the array

 Comparator<Point2D> cmp = Point2D.distanceToOrder(new Point2D(0, 0));
 Arrays.sort(array, cmp);
 // … print the array
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

1 Promise to have method
compareTo that allows
comparing this point to
other points.

2 Required by the
Comparable
interface

A Provides access to an an instance of the Comparator

B Promise to implement method
compare that allows comparing two
different points.

C Required by the
Comparator interface.

Defines a natural
(default) order
between points.

Defines an alternate
order between points.

Uses the alternate order. Requires
an instance of the Comparator.

D

3 Uses the natural order. Requires the array elements
to be of a type that implements Comparable.

EXERCISE 2: Three-Way Merge Sort

3-way Merge sort is a variant of the Merge sort algorithm that considers 3 “equal” subarrays instead of 2
subarrays.

(a) Given 3 sorted subarrays of size , how many comparisons are needed (in the worst case) to
merge​ them to a sorted array of size ​? Provide your answer in tilde notation.

(b) What is the ​order of growth​ of the number of compares in 3-way Merge Sort as a function of the
array size ?n

(c) Given a choice, would you choose 3-way or 2-way merge sort? Justify your answer.

https://www.codecogs.com/eqnedit.php?latex=n%0

EXERCISE 3: Algorithm Design

Let​ be an array of length . An array​ is a circular shift of if it consists of the, a , ... , aa = a0 1 n−1 n b a
subarray followed by the subarray​ for some integer​ . In the example, a , ... , aak k+1 n−1 , a , ... , aa0 1 k−1 k
below, is a circular shift of (with and).b a k = 7 0n = 1

sorted array a[] circular shift b[]

1 2 3 5 6 8 9 34 55 89 34 55 89 1 2 3 5 6 8 9

Suppose that you are given an array that is a circular shift of some sorted array (but you have access tob
neither nor the sorted array). Assume that the array consists of​ comparable keys, no two of whichk b n
are equal. Design an efficient algorithm to determine whether a given key appears in the array . Yourb
algorithm should run in .

https://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)%0

ASSIGNMENT TIPS: Autocomplete

(1) Given an array of elements with duplicates, can we use the book implementation of Binary Search
to find the ​first occurrence​ ​of an element?

● The standard implementation of Binary Search finds ​an​ occurrence, which is not
necessarily the ​first​ occurence.

● Finding ​an​ occurrence and then scanning left to find the first occurence yields a linear
running time (in the worst case), which is not good!

● In this assignment, you will have to modify Binary Search to find the first (and last)
occurence of an element in a sorted array in logarithmic time (in the worst case).

● For full credit, your algorithm has to make at most compares. However, if yourlog n⌉ 1 + ⌈ 2
algorithm in but makes more than compares​, you will lose ​only​ 1 point.log n⌉ 1 + ⌈ 2

(2) ​ ​What is the order of growth of the ​substring​ method?

● Creating a substring of length takes time proportional to .r r

● Note that the string comparison functions in the assignment should take time proportional
to the number of characters needed to resolve the comparison.

Example:​ The comparison between​ X="AAAAAAA"​ and ​Y="AABBB"​ can be resolved when
the first ​"B"​ in ​Y​ is reached. The comparison function should not take time proportional to
the size of ​X​ or the size of ​Y​. It should take time proportional to the number of characters
needed to resolve the comparison!

● Most uses of the ​substring​ method in the ​compare​ functions do not meet the above time
constraint. So, be careful!

(3) Are there other things I should note about the assignment?

Definitely! This is why we have a ​Checklist​ for the assignment. You might want to check the answers
for the following questions in the Checklist:

● What is meant by an ​immutable​ data type?

● What is the meaning of the type parameter ​Key​ in the following function declaration?
public​ ​static​ <Key> ​int​ firstIndexOf(Key[] a, Key key, ​_
 Comparator<Key> comparator)​_

● What’s a good way to get a ​Comparator​ object to use for ​testing​?

(4) A ​video​ that provides some tips for the assignment is available on the assignment Checklist page.
The video was made in 2014, so a few things are outdated, but most of it is still useful (for example,
the API has changed).

https://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)%0
https://www.cs.princeton.edu/courses/archive/spring20/cos226/assignments/autocomplete/checklist.php
http://youtu.be/x27BMJ9kGRk

