5.1 STRING SORTS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu 4 SUl[ﬁX al‘l’ays

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Keyword-in-context search

Given a text of n characters, preprocess it to enable fast substring search
(find all occurrences of query string context).

% more tale.txt

1t was the best of times

1t was the worst of times

1t was the age of wisdom

1t was the age of foolishness
1t was the epoch of belief

1t was the epoch of incredulity
1t was the season of 1light

1t was the season of darkness
1t was the spring of hope

1t was the winter of despair

Keyword-in-context search

Given a text of n characters, preprocess it to enable fast substring search
(find all occurrences of query string context).

% java KWIC tale.txt 15 «— number of characters of
surrounding context

search

search

search

search

search

search

search

better thing
better thing
better thing
better thing

Applications. Linguistics, databases, web search, word processing,

~ w N =2 O

O O N O wuvn

10
11
12
13
14

Suffix sort

form suffixes /

=S VW O =S + 4+ N O OO0V Y = + —-

+
=
oV

=S W O =t - N D T W0

=S VY =S + 4~ 0 DT N VW =

= VW 9 =+t =4~ N ® T N QD

=S VW Y =S+ =+ 0N ® T W0

= W Y =t =t 0 O T

= W O = + = 0 O

input string

i
0

= 0 VO = t+ =t W

t was b e s t 1

1

= 0 VY = t+ =t

2

= 0w ¥ = t =

=S 0 vV = +

3

= n o =

4

5 6

d S W
S W

5
6
0
)
4
7

/7 8

3
12

13
8
1

10

14
2

11

!

Tt w a s w
9 10 11 12 13 14

sort suffixes to bring query strings together
b e s t 1

d

S =S =St VW N N =« . D T D

Q

S

=S = " = + Ot 0 O W0

o))

w

- MM = = t O

+
=
¥
7

array of suffix indices
in sorted order

0w 9 Q -+

S + 0 N ~+ =

on

O =4 = T = t

Q

Twasw

=

.i

wn
=

T wasw

1T twasw

T wasw

Keyword-in-context search: suffix-sorting solution

« Preprocess: suffix sort the text.

« Query: binary search for query; scan until mismatch.

KWIC search for “search” in Tale of Two Cities

' O O
T T > = < C
c o ¥ | ©
g +£ € »n O «©
| 4 O @© @© Y
L - = = L |
Q— < | & <«
+ | | O © >
+< n 4- < O O
V —~ O = U X
— I
| n n wn “
> n n n O O
E UV Vv U Y4 Y
|« « |
T ¥ ¥ P <o <
N N v U U
— & £ & <«
M @M @M @© @© (@O
v v v VvV D
mn nu nu u n un
mmmmﬂm
m d o STy
O N~ O
1

b r o ug

a d _

h

T U~ T | ¥ wnw <
C C “ — +H ®© 0
s v « O S5 Y4 ®©
o - © C 0 U o
nwn « v | © T |
> | = ®© | @
< > L. . ©o | O r—
| O ¥ « T £ QO
L O € & ©C ©
 E ¥ 0N - T
< - O | & © <«
I v« £ o
- 4 4 © © | +

©O O O + &

L C C C©C O
O U U U d
[G S .
M @ @ © ©
9 v v O v
n unu v unv v
N N OO H O
OO < o o
N O M o0 <+
S N M = o0
A o0 < «H N
<t =H A <

d

n

d

S € a S

691536

S € a S e

d

536569
484763

_t h a t

S € a S e

War story

Q. How to efficiently form (and sort) the n suffixes?

String[] suffixes = new String[n];
for (int i = 0; i < n; i++)
suffixes[i] s.substring(i, n);

Algorithms

Arrays.sort(suffixes);

3" printing (2012)

m

amendments. txt 0.25 sec 2.0 sec
aesop.txt 192 K 1.0 sec out of memory
mobydick. txt 1.2 M /.6 sec out of memory

chromosomell. txt /.1 M 61 sec out of memory

Radix sorting: quiz 3

How much memory as a function of n?

String[] suffixes
for (int 1 = 0; 1
suffixes[i] =

<
S

new String[n];
n; 1++)
.substring(i, n);

Arrays.sort(suffixes);

A 1
B. =n
C. nlogn

Al gqr“ith)m”s

3" printing (2012)

The String data type: Java 7u5 implementation

public final class String implements Comparable<String>

{
private char[] value; // characters
private int offset; // 1ndex of first char in array
private int length; // length of string
private int hash; // cache of hashCode()
String s = "Hello, World"; length =12
valuel[] H E L L O , W O R L D

0 1 2 3 4 5 §) / 8 9 10 11

1

offset=0

String t = s.substring(7, 12);

(constant extra memory) length =5
value[] H E L L 0 ; W 0 R L D
0 1 2 3 5 6 7 8 9 10 11

offset =7

The String data type: Java 7ué implementation

public final class String implements Comparable<String>

{

private char[] value; // characters
private int hash; // cache of hashCode()

String s = "Hello, World";

value[] H E L L O , W O R L D

String t = s.substring(7, 12);

(linear extra memory)

valuel[] W 0 R L D
0 1 2 3 4

The String data type: performance

String data type (in Java). Sequence of characters (immutable).
Java 7u5. Immutable char[] array, offset, length, hash cache.
Java 7u6. Immutable char[] array, hash cache.

length 1 1

indexing 1 1
concatenation m+n m+n
substring extraction @ @

immutable? v v

memory 64 + 2n 56 + 2n

A Reddit exchange

I'm the author of the substring() change. As has
been suggested 1n the analysis here there were two
motivations for the change
e Reduce the size of String instances. Strings
are typically 20-40% of common apps footprint.
e Avoid memory leakage caused by retained
substrings holding the entire character array.

bondolo

Changing this function, 1n a bugfix release no

less, was totally irresponsible. It broke backwards

compatibility for numerous applications with errors

that didn't even produce a message, just freezing

and timeouts... All pain, no gain. Your work was

not just vain, 1t was thoroughly destructive, even cypherpunks
beyond its immediate effect.

11

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?
A. Define Ssuffix class ala Java 7u5 String representation.

public class Suffix implements Comparable<Suffix>

{
private final String text;
private final int offset;
public Suffix(String text, int offset)
{
this.text = text;
this.offset = offset;
}
public int length() { return text.length() - offset;
public char charAt(int 1) { return text.charAt(offset + 1);
public int compareTo(Suffix that) { /* see textbook */
}

offset

12

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?
A. Define Ssuffix class ala Java 7u5 String representation.

Suffix[] suffixes = new Suffix[n];
for (int 1 =0; 1 < n; 1++)
suffixes[i] hew Suffix(s, 1);

Algorithms

Arrays.sort(suffixes);

4™ printing (2013)

Optimizations. [5X faster and 32X less memory than Java 7u5 version]
« Use 3-way string quicksort instead of Arrays.sort().

- Manipulate suffix offsets directly instead of via explicit Suffix objects.

13

Suffix arrays: theory

Conjecture. [Knuth 1970] No linear-time algorithm.

Proposition. [Weiner 1973] Linear-time algorithms (suffix trees).

“ has no practical virtue... but a historic
monument in the area of string processing.’

A Space-Economical Suffix Tree Construction Algorithm

LINEAR PATTERN MATCHING ALGORITHMS

EDWARD M. MCCREIGHT

Peter Weiner Xerox Palo Alto Research Center, Palo Alto, California

*
The Rand Corporation, Santa Monica, California L
ABSTRACT. A new algorithm 1s presented for constructing auxiliary digital search trees to aid in

exact-match substring searching. This algorithm has the same asymptotic running time bound as

previously published algorithms, but is more economicsl in space. Some implementation considera-

tions are discussed, and new work on the modification of these search trees in response to incremental
Abstract changes in the strings they index (the update problem) is presented.

In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching

in linear time. Related problems, such as those discussed in [4], have pre-

viously been solved by efficient but sub-optimal algorithms. In this paper, we

introduce an interesting data structure called a bi-tree. A linear time algo-

rithm for obtaining a compacted version of a bi-tree associated with a given . .

string is presented. With this construction as the basic tool, ye indicate how On—llne construction Of SllfﬁX trees
to solve several pattern matching problems, including some from [4], in linear

time,

1

Esko Ukkonen

Department of Computer Science, University of Helsinki,
P. O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland
Tel.: +358-0-7084172, fax: +358-0-7084441

Email: ukkonen@cs.Helsinki.FI

Suffix arrays: practice

Applications. Bioinformatics, information retrieval, data compression,

Many ingenious algorithms.

Constants and memory footprint very important.

State-of-the art still changing.

1991

1999

2003

2003

2008

2010

Manber-Myers

Larsson-Sadakane

Karkkainen-Sanders

Ko-Aluru

divsufsort2

sais

nlogn

nlogn

nlogn

8n

13 n

10 n

5n

6n

<«—— see lecture videos

—

=

about 10x faster

good choices
(libdivsufsort)

than Manber-Myers

15

