

Overview. This worksheet has worked examples for performing memory analysis of small pieces of code.

To get the full benefit, review pages 200-204 from the book. Go through the worked examples below in the
same order they are presented and avoid looking at the solutions and explanations until you have tried to find
the solutions on your own.

Built-in Types

 COS226 Memory Analysis: Practice Examples Spring ‘20

private int a = 0;
private int b = 123456789;
private double c = 3.14;

Question. Using the 64-bit memory cost model from lecture and the textbook, how much memory does each of
the following pieces of code use?

Ex. 1
Solution. 16 bytes.

Primitive types use the same amount of memory
regardless of the value stored in the variable. Each int
variable uses 4 bytes and a double variable uses 8 bytes.

private double[] a1;
private String b;

Solution. 16 bytes.

This creates a reference to an array and a reference a
String object. No actual array object or String object is
created. A reference in java uses 8 bytes, regardless of
what the reference type is.

double[] a2 = new double[n];

Ex. 2

Ex. 3

Double[] a = new Double[n];
Solution. ~8n bytes.

This creates a reference to an array (8 bytes) and
also an actual array of references to objects of type
Double (with capital D), where the references are
initially null as shown below. Each reference in the
array uses 8 bytes.

Ex. 4

Solution. ~8n bytes.

This creates a reference to an array and also an
actual array object of size n. The reference uses 8
bytes and the array uses bytes. The
illustrations compare a1 in Ex.2 and a2 in Ex.3:

24 + 8n

Double[] a = new Double[n];
for (int i = 0; i < n; i++)
 a[i] = new Double(Math.random());
// An object of type Double uses
// 24 bytes regardless of the value
// it stores.

Solution. ~32n bytes.

The references in the array are pointing to actual Double objects (i.e. they are not null as in Ex. 4).
The total is: 8n (references to Double objects) + 24n (Double objects) + 24 (array overhead) +
8 (reference to array) ~ 32n bytes.

Ex. 5

int[][] a = new int[n][n];

Solution. ~4n2 bytes.

There are elements in the array each of size 4
bytes. However, the total size is not exactly
bytes. As the illustration to the right shows, 2D
arrays in Java are implemented as arrays of
arrays.

n2

4n2

Ex. 6

Double[][] a = new Double[n][n];
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 a[i][j] = new Double(0.5);

Ex. 7
Solution. ~32n2 bytes.

The first line creates (null) references to Double
objects. Each reference uses 8 bytes. This is exactly like
Ex. 6 with the 4-bytes int elements replaced by 8-bytes
references. The for loop creates Double objects. Each
object uses 24 bytes (see Ex. 5). The total is

 bytes.

n2

n2

8n2 + 24n2

∼ 32n2

char[] a = new char[10];

Ex. 8

Solution. 56 bytes.

Since each char requires 2 bytes, the size of the array (without the array overhead) is 20 bytes. However, in
64-bits memory, objects use blocks that are multiples of 8 bytes. Therefore, 4 bytes of padding are added.
The total is: 8 bytes (reference to array) + 20 bytes (10 characters) + 4 bytes (padding) + 24 bytes (array
overhead) = 56 bytes.

User-defined Types

public class Complex {
 private double real;
 private double imag;
}

Solution. 32 bytes.

Objects use 16 bytes of overhead plus the size of their
data members. In Complex, there are two data members
of type double (8 bytes each).

Ex. 9

public class MyType {
 private int a;
 private int[] b;
}

Solution. 32 bytes.

In addition to the 16 bytes of object overhead, there are 4
bytes for the int data member and 8 bytes for the
reference to the array. The total is 28 bytes. Since this is
not a multiple of 8, 4 more bytes of padding are added.

Ex. 10

Note. We don’t have information about the size of the array that will be attached to b. Therefore, we
considered only the size of the reference. Assuming that an array of size n is attached to b, the size of an
object of type MyType including the referenced memory becomes bytes32 + 4n ∼ 4n

public class Queue {
 private Node first, last;

 private static class Node {
 private int item;
 private Node next;
 }
}

Solution.

An empty Queue uses 16 bytes (object overhead) plus 8
bytes for each of the references to Node objects. I.e., the
total is 32 bytes.

A Queue with n nodes uses 32 bytes the size of
each Node.

+ n ×

Ex. 11

An object of type Node requires 16 bytes of object overhead + 4 bytes for the int item + 8 bytes for the
reference to the next Node. This totals to 28 bytes, which requires 4 bytes of padding to become a multiple of
8. Hence the total is 32 bytes (class Queue) (n nodes) bytes.+ 32 × n ∼ 32n

public class Queue {
 private Node first, last;

 private class Node {
 private int item;
 private Node next;
 }
}

Solution.

The only difference between this and Ex. 11 is that the
Node class is not static, which means that it has to
store a reference to the Queue. Hence, the size of a Node
object is 32 bytes (as computed in Ex. 11) + 8 bytes
(reference to the Queue) = 40 bytes.
Hence, a Queue with n nodes uses bytes.∼ 40n

Ex. 12

public class Queue<Item> {
 private Node first, last;

 private class Node {
 private Item item;
 private Node next;
 }
}

Solution. ~40n bytes.

This differs from Ex.12 in that the Queue is generic. The
data member item is a reference to an object whose type
is not known until runtime. Therefore, we will consider
the size of the reference (8 bytes) without the size of the
object attached to it, unless we have information on what
the type of this object is.

Ex. 13

A Node object requires: 16 bytes (object overhead) +
 8 bytes (reference to the Queue) +
 8 bytes (Item reference) +
 8 bytes (Node reference),
which is 40 bytes in total. Adding 32 bytes for class Queue (see Ex. 11) and multiplying the node size by the
number of nodes n gives 32 + 40n bytes for a Queue of n nodes.∼ 40n

public class Queue<Item> {
 private Node first, last;

 private class Node {
 private Item item;
 private Node next;
 }
}

// assume the Queue has n
// Nodes of Double objects

Solution. ~64n bytes.

A Node object requires: 16 bytes (object overhead) +
 8 bytes (reference to the Queue) +
 8 bytes (Item reference) +
 24 bytes (Double object) +
 8 bytes (Node reference),
which is 64 bytes for a single node and bytes for a
Queue of n nodes.

∼ 64n

Ex. 14

