
Final exam information

Final exam.

・Check out between 4:30pm on 5/18 and 4:30pm on 5/20.

・3 hours to complete.

・Gradescope platform.

Rules.

・Honor Code.

・Closed book, closed note.

・Strongly emphasizes material since the midterm.

・Electronic devices are prohibited (except to take the exam).

・8.5-by-11 cheatsheet (both sides, in your own handwriting).

Final exam preparation.

・Practice by doing old exams.

・Ask questions via Zoom office hours or Ed.

1

see course website
for exam archive

including associated
readings and assignments

(but no serious Java programming)

see course website for schedule

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/29/20 10:07 AM

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithmshttps://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

3

Algorithm design

Algorithm design patterns.

・Analysis of algorithms.

・Greedy.

・Network flow.

・Dynamic programming.

・Divide-and-conquer.

・Randomized algorithms.

Want more? See COS 340, COS 343, COS 423, COS 445, COS 451, COS 488, .…

4

Interview questions

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Goal. Find T using fewest number of tosses.

6

Egg drop

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Goal. Find T using fewest number of tosses.

Variant 0. 1 egg.

Variant 1. ∞ eggs.

Variant 2. 2 eggs.

7

Egg drop

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Goal. Find T using fewest number of tosses.

Variant 0. 1 egg.

Solution. Use sequential search: drop on floors

1, 2, 3, …, T until egg breaks.

Analysis. 1 egg and T tosses.

Egg drop

8

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

running time depends upon
a parameter that you don’t no a priori

Egg drop

Goal. Find T using fewest number of tosses.

Variant 1. ∞ eggs.

Solution. Binary search for T.

・Initialize [lo, hi] = [0, n].

・Repeat until length of interval is 1:
– drop on floor mid = (lo + hi) / 2.
– if it breaks, update hi = mid.
– if it doesn’t break, update lo = mid.

Analysis. ~ log2 n eggs, ~ log2 n tosses.

9

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Suppose T is much smaller than n.
Can you guarantee Θ(log T) tosses?

Egg drop

Goal. Find T using fewest number of tosses.

Variant 1′. ∞ eggs and Θ(log T) tosses.

Solution. Use repeated doubling; then binary search.

・Drop on floors 1, 2, 4, 8, 16, …, x to find a floor

x such that T ≤ x < 2T.

・Binary search in interval [½ x, x].

Analysis. ~ log2 T eggs, ~ 2 log2 T tosses.

・Repeated doubling: 1 egg and 1 + log2 x tosses.

・Binary search: ~ log2 x eggs and ~ log2 x tosses.

・Recall: T ≤ x < 2T.

10

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Goal. Find T using fewest number of tosses.

Variant 2. 2 eggs.

In worst case, how many tosses needed as a 
function of n?

A. Θ(1)

B. Θ(log n)

C. Θ()

D. Θ(n)

Algorithm design: quiz 1

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

p
n

<latexit sha1_base64="19RJT8B+LATTAWXFMhiGPyaBiaI=">AAACMHicbVDLTsJAFJ36RHwBLt00EhNXpPURWZK4cYmJPBJoyHR6CxOm0zpzayANP+FWv8Kv0ZVx61dYShcCnmSSk3PunXvvcSPBNVrWp7GxubW9s1vYK+4fHB4dl8qVtg5jxaDFQhGqrks1CC6hhRwFdCMFNHAFdNzx3dzvPIPSPJSPOI3ACehQcp8ziqnU7esnhYmcDUpVq2ZlMNeJnZMqydEclI1K3wtZHIBEJqjWPduK0EmoQs4EzIr9WENE2ZgOoZdSSQPQTpItPDPPU8Uz/VClT6KZqX87EhpoPQ3ctDKgONKr3lz8z+vF6NedhMsoRpBsMciPhYmhOb/e9LgChmKaEsoUT3c12YgqyjDNaGlK9ncEbOmSZBJLzkIPVlSBE1R0nqK9mtk6aV/W7KvazcN1tVHP8yyQU3JGLohNbkmD3JMmaRFGBHkhr+TNeDc+jC/je1G6YeQ9J2QJxs8vvDGrAA==</latexit>

Egg drop (asymmetric search)

Goal. Find T using fewest number of tosses.

Variant 2. 2 eggs.

Solution. Use gridding; then sequential search.

・Toss at floors

until first egg breaks, say at floor .

・Sequential search in interval .

Analysis. At most tosses.

・First egg: ≤ tosses.

・Second egg: ≤ tosses.

Signing bonus 1. Use 2 eggs and at most tosses.

Signing bonus 2. Use 3 eggs and at most 3 n1/3 tosses.
12

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

p
2n

<latexit sha1_base64="Ar6eiC74UkVQbsb3vW7Do6Zen0I=">AAACMXicbVDLTsJAFJ36RHwBLt00EhNXpEWNLEncuMREHgYaMh0uMGE6rTO3BtLwFW71K/wadsatP2FbuhDwJJOcnHPv3HuPGwiu0bIWxtb2zu7efu4gf3h0fHJaKJZa2g8Vgybzha86LtUguIQmchTQCRRQzxXQdif3id9+BaW5L59wFoDj0ZHkQ84oxtJzT78ojKpy3i+UrYqVwtwkdkbKJEOjXzRKvYHPQg8kMkG17tpWgE5EFXImYJ7vhRoCyiZ0BN2YSuqBdqJ047l5GSsDc+ir+Ek0U/VvR0Q9rWeeG1d6FMd63UvE/7xuiMOaE3EZhAiSLQcNQ2GibybnmwOugKGYxYQyxeNdTTamijKMQ1qZkv4dAFu5JJqGkjN/AGuqwCkqmqRor2e2SVrVin1duX28KddrWZ45ck4uyBWxyR2pkwfSIE3CiEfeyDv5MD6NhfFlfC9Lt4ys54yswPj5BTzyqzw=</latexit>

p
n, 2

p
n, 3

p
n, . . .

<latexit sha1_base64="23CrmC8HrhMb6VmU/t9u0Q2tPm4=">AAACYHicbVDLSgMxFE3HV62vVne6CRbBhZQZFS24Edy4VLC20Cklk7nVYCYZkztiGfonfo1b/QG3folp7cJOPRA499xX7olSKSz6/lfJW1hcWl4pr1bW1jc2t6q17XurM8OhxbXUphMxC1IoaKFACZ3UAEsiCe3o6Wqcb7+AsUKrOxym0EvYgxIDwRk6qV89C+2zwVyNjmh4EV7Q40J8UohpKGONtl+t+w1/AjpPgimpkylu+rXSdhhrniWgkEtmbTfwU+zlzKDgEkaVMLOQMv7EHqDrqGIJ2F4+OXBED5wS04E27imkE/VvR84Sa4dJ5CoTho+2mBuL/+W6GQ6avVyoNENQ/HfRIJMUNR27RWNhgKMcOsK4Ee6vlD8ywzg6T2e2TGanwGcuyV8zJbiOoaBKfEXDRs7FoOjZPLk/bgSnjebtaf2yOfWzTPbIPjkkATknl+Sa3JAW4eSNvJMP8ln69srellf7LfVK054dMgNv9wfhQLfy</latexit>

p
n

<latexit sha1_base64="NNWQZ0wyzQNdMZP8L0uenrvxvNE=">AAACMHicbVDLTsJAFJ3iC/EFuHTTSExckdaQyJLEjUtM5JEAIdPpLUyYTuvMrYE0/IRb/Qq/RlfGrV9hW7oQ8CSTnJxz79x7jxMKrtGyPo3Czu7e/kHxsHR0fHJ6Vq5UuzqIFIMOC0Sg+g7VILiEDnIU0A8VUN8R0HNmd6nfewaleSAfcRHCyKcTyT3OKCZSf6ifFMZyOS7XrLqVwdwmdk5qJEd7XDGqQzdgkQ8SmaBaD2wrxFFMFXImYFkaRhpCymZ0AoOESuqDHsXZwkvzKlFc0wtU8iSamfq3I6a+1gvfSSp9ilO96aXif94gQq85irkMIwTJVoO8SJgYmOn1pssVMBSLhFCmeLKryaZUUYZJRmtTsr9DYGuXxPNIcha4sKEKnKOiaYr2ZmbbpHtTtxv15kOj1mrmeRbJBbkk18Qmt6RF7kmbdAgjgryQV/JmvBsfxpfxvSotGHnPOVmD8fMLvXurBA==</latexit>

2
p
n

<latexit sha1_base64="g+fFUiQPr9x2nqHJnZkmZQJ4Yjo=">AAACMnicbVDLTgJBEJzFF+IL8OhlIjHxRHYJiRxJvHjERB4RNmR2aGDC7Ow602sgG/7Cq36FP6M349WPcFk4CFjJJJWq7unu8kIpDNr2h5XZ2d3bP8ge5o6OT07P8oViywSR5tDkgQx0x2MGpFDQRIESOqEG5nsS2t7kduG3n0EbEagHnIXg+mykxFBwhon0WKE986QxVvN+vmSX7RR0mzgrUiIrNPoFq9gbBDzyQSGXzJiuY4foxkyj4BLmuV5kIGR8wkbQTahiPhg3Tlee06tEGdBhoJOnkKbq346Y+cbMfC+p9BmOzaa3EP/zuhEOa24sVBghKL4cNIwkxYAu7qcDoYGjnCWEcS2SXSkfM804JimtTUn/DoGvXRJPIyV4MIANVeIUNVuk6Gxmtk1albJTLdfuq6V6bZVnllyQS3JNHHJD6uSONEiTcKLIC3klb9a79Wl9Wd/L0oy16jkna7B+fgGbzqtq</latexit>

p
n

<latexit sha1_base64="NNWQZ0wyzQNdMZP8L0uenrvxvNE=">AAACMHicbVDLTsJAFJ3iC/EFuHTTSExckdaQyJLEjUtM5JEAIdPpLUyYTuvMrYE0/IRb/Qq/RlfGrV9hW7oQ8CSTnJxz79x7jxMKrtGyPo3Czu7e/kHxsHR0fHJ6Vq5UuzqIFIMOC0Sg+g7VILiEDnIU0A8VUN8R0HNmd6nfewaleSAfcRHCyKcTyT3OKCZSf6ifFMZyOS7XrLqVwdwmdk5qJEd7XDGqQzdgkQ8SmaBaD2wrxFFMFXImYFkaRhpCymZ0AoOESuqDHsXZwkvzKlFc0wtU8iSamfq3I6a+1gvfSSp9ilO96aXif94gQq85irkMIwTJVoO8SJgYmOn1pssVMBSLhFCmeLKryaZUUYZJRmtTsr9DYGuXxPNIcha4sKEKnKOiaYr2ZmbbpHtTtxv15kOj1mrmeRbJBbkk18Qmt6RF7kmbdAgjgryQV/JmvBsfxpfxvSotGHnPOVmD8fMLvXurBA==</latexit>

c
p
n

<latexit sha1_base64="gKZIZiRaXyXJQGIPFLjmc5keuEo=">AAACMnicbVDLTsJAFJ3iC/EFuHQzkZi4Iq0xkSWJG5eYyCNCQ6bTC0yYTuvMrYE0/IVb/Qp/RnfGrR9hgS4EPMkkJ+fcO/fe40VSGLTtDyu3tb2zu5ffLxwcHh2fFEvllgljzaHJQxnqjscMSKGgiQIldCINLPAktL3x7dxvP4M2IlQPOI3ADdhQiYHgDFPpkdOeedKYqFm/WLGr9gJ0kzgZqZAMjX7JKvf8kMcBKOSSGdN17AjdhGkUXMKs0IsNRIyP2RC6KVUsAOMmi5Vn9CJVfDoIdfoU0oX6tyNhgTHTwEsrA4Yjs+7Nxf+8boyDmpsIFcUIii8HDWJJMaTz+6kvNHCU05QwrkW6K+UjphnHNKWVKYu/I+ArlySTWAke+rCmSpygZvMUnfXMNknrqupcV2v315V6LcszT87IObkkDrkhdXJHGqRJOFHkhbySN+vd+rS+rO9lac7Kek7JCqyfX/Q8q5s=</latexit>

⇥
c
p
n�

p
n, c

p
n
⇤

<latexit sha1_base64="4DzM7D3ExWGqpy3rCv3dtAQreeY=">AAACZ3icbVBdSxtBFJ1sv9R+GC1IoS/XhkIfbNgtggERhL74aMGokF3C7M3dZHB2dp25K4Ylv6a/xld96k/ov3ASg5jogYEz59w7d+5JS60ch+G/RvDq9Zu371ZW195/+PhpvbmxeeqKyiJ1sdCFPU+lI60MdVmxpvPSksxTTWfpxe+pf3ZF1qnCnPC4pCSXQ6MyhZK91G8exJoyhh7EO4AQu0vLtZnAz0e6AxDvx/uAj56/xFYNRwxJv9kK2+EM8JxEc9IScxz3Nxqb8aDAKifDqKVzvSgsOamlZYWaJmtx5aiUeCGH1PPUyJxcUs/2nMB3rwwgK6w/hmGmPu2oZe7cOE99ZS555Ja9qfiS16s46yS1MmXFZPBhUFZp4AKmocFAWULWY08kWuX/CjiSViL7aBemzN4uCRc2qa8ro7AY0JKq+ZqtnPgUo+XMnpPTX+1ot935s9s67MzzXBFfxTfxQ0RiTxyKI3EsugLFX3EjbsVd43+wHmwFXx5Kg8a857NYQLB9D3epuog=</latexit>

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

14

Greedy algorithms

Make locally optimal choices at each step.

Familiar examples.

・Huffman coding.

・Prim’s algorithm.

・Kruskal’s algorithm.

・Dijkstra’s algorithm.

More classic examples.

・U.S. coin changing.

・Activity scheduling.

・Gale–Shapley stable marriage.

・...

Caveat. Greedy algorithm rarely leads to globally optimal solution.

(but is often used anyway, especially for intractable problems)

15

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Ex. Query = “textbook programming computer”

This book is intended to survey the most important computer
algorithms in use today, and to teach fundamental techniques
to the growing number of people in need of knowing them. It
is intended for use as a textbook for a second course in
computer science, after students have acquired basic
programming skills and familiarity with computer systems.
The book also may be useful for self-study or as a reference
for people engaged in the development of computer systems or
applications programs, since it contains implementations of
useful algorithms and detailed information on performance
characteristics and clients.

This book is intended to survey the most important computer
algorithms in use today, and to teach fundamental techniques
to the growing number of people in need of knowing them. It
is intended for use as a textbook for a second course in
computer science, after students have acquired basic
programming skills and familiarity with computer systems.
The book also may be useful for self-study or as a reference
for people engaged in the development of computer systems or
applications programs, since it contains implementations of
useful algorithms and detailed information on performance
characteristics and clients.

19 words

16

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

how?

17

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 130 to ???

18

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 130 to ???

19

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 130 to ???

20

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 130 to 190

21

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 200 to ???

22

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 200 to ???

23

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 200 to ???

24

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 200 to ???

25

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 200 to 320

26

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 250 to 320

27

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 345 to ???

28

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 345 to ???

29

Document search

Given a document that is a sequence of n words, and a query that

is a sequence of m words, find the smallest range in the document

that includes the m query words (in the same order).

Solution.

・For each query word, maintain a queue of positions where it occurs.

・Maintain smallest range containing m query words, with first word at i.

textbook: 130 200 250 345

programming: 100 180 184 300 315

computer: 120 150 190 290 320 400

range: 345 to ???

What is running time as a function of the number of words n in the
input and the number of words m in the query?  
 
Assume m ≤ n and that each word is at most, say, 20 characters.  
 

A. Θ(log n)

B. Θ(n)

C. Θ(n log n)

D. Θ(n 2)

Algorithm design: quiz 2

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

32

Network flow

Classic problems on graphs and digraphs.

Familiar examples.

・Shortest paths.

・Bipartite matching.

・Maxflow and mincut.

・Minimum spanning tree.

Other classic examples.

・Minimum-cost arborescence.

・Non-bipartite matching.

・Assignment problem.

・Minimum-cost flow.

・...

Applications. Many many problems can be modeled using network flow.

“reduction”

33

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

s

2 3

1G

t

8

21

4 3

9
10

7

k = 0: s→1→t (17)
k = 1: s→3→t (13)
k = 2: s→2→3→t (11)
k = 3: s→2→1→3→t (10)

34

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

Solution. Create k+1 copies of the digraph G0, G1, …, Gk. For each edge v→w

・Black: add edge from vertex v in graph Gi to vertex w in Gi.

・Orange: add edge from vertex v in graph Gi to vertex w in Gi+1.

s

2 3

1G

t

s

2 3

1

t

s′

2′ 3′

1′

t′

s"

2" 3"

1"G0 G1 G2

t"

8

8 8 8

2

2 2

1

4 3

9

7

10

35

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

Solution. Create k+1 copies of the digraph G0, G1, …, Gk. For each edge v→w

・Black: add edge from vertex v in graph Gi to vertex w in Gi.

・Orange: add edge from vertex v in graph Gi to vertex w in Gi+1.

・Find shortest path from s to every copy of t (and choose best).

s

2 3

1

t

s′

2′ 3′

1′

t′

s"

2" 3"

1"

t"

8 8 8

2 2

G0 G1 G2

What is worst-case running time of algorithm as a function of k,
number of vertices V, and number of edges E? Assume E ≥ V.

A. Θ(E log V)

B. Θ(k E)

C. Θ(k E log V)

D. Θ(k2 E log V)

Algorithm design: quiz 3

(k E) log (k V)

number
of edges

number
of vertices

Dijkstra: E log V

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

38

Dynamic programming

・Break up problem into a series of overlapping subproblems.

・Build up solutions to larger and larger subproblems.

(caching solutions to subproblems in a table for later reuse)

Familiar examples.

・Shortest paths in DAGs.

・Seam carving.

・Bellman–Ford.

More classic examples.

・Unix diff.

・Viterbi algorithm for hidden Markov models.

・Smith–Waterman for DNA sequence alignment.

・CKY algorithm for parsing context-free grammars.

...

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

39

House coloring problem

Goal. Paint a row of n houses red, green, or blue so that

・No two adjacent houses have the same color.

・Minimize total cost, where cost(i, color) is cost to paint i given color.

A B C D E F

7 6 7 8 9 20

3 8 9 22 12 8

16 10 4 2 5 7

cost to paint house i the given color
(3 + 6 + 4 + 8 + 5 + 8 = 34)

40

House coloring problem

Goal. Paint a row of n houses red, green, or blue so that

・No two adjacent houses have the same color.

・Minimize total cost, where cost(i, color) is cost to paint i given color.

Subproblems.

・R[i] = min cost to paint houses 1, …, i with i red.

・G[i] = min cost to paint houses 1, …, i with i green.

・B[i] = min cost to paint houses 1, …, i with i blue.

・Optimal cost = min { R[n], G[n], B[n] }.

Dynamic programming recurrence.

・R[i + 1] = cost(i+1, red) + min { G[i], B[i] }

・G[i + 1] = cost(i+1, green) + min { B[i], R[i] }

・B[i + 1] = cost(i+1, blue) + min { R[i], G[i] }

overlapping
subproblems

What is running time of algorithm as a function of n?

A. Θ(n)

B. Θ(n log n)

C. Θ(n log2 n)

D. Θ(n 2)

Algorithm design: quiz 4

int[] r = new int[n+1];
int[] g = new int[n+1];
int[] b = new int[n+1];

for (int i = 1; i <= n; i++) {
 r[i+1] = cost[i+1][RED] + Math.min(g[i], b[i]);
 g[i+1] = cost[i+1][GREEN] + Math.min(b[i], r[i]);
 b[i+1] = cost[i+1][BLUE] + Math.min(r[i], g[i]);
}

int minCost = min3(r[n], g[n], b[n]);

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

43

Divide and conquer

・Break up problem into two or more independent subproblems.

・Solve each subproblem recursively.

・Combine solutions to subproblems to form solution to original problem.

Familiar examples.

・Mergesort.

・Quicksort.

More classic examples.

・Closest pair.

・Convolution and FFT.

・Matrix multiplication.

・Integer multiplication.

…

Prototypical usage. Turn brute-force Θ(n2) algorithm into Θ(n log n) one.

needs to take COS 226?

44

Music site tries to match your song preferences with others.

・Your ranking of songs: 0, 1, …, n−1.

・My ranking of songs: a0, a1, …, an−1.

・Music site consults database to find people with similar tastes.

Kendall-tau distance. Number of inversions between two rankings.

Inversion. Songs i and j are inverted if i < j, but ai > aj.

Personalized recommendations

A B C D E F G H

you 0 1 2 3 4 5 6 7

me 0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

Problem. Given a permutation of length n, count the number of inversions.

Brute-force n2 algorithm. For each i < j, check if ai > aj .

A bit better. Run insertion sort; return number of exchanges.

Goal. n log n time (or better).

45

Counting inversions

0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

46

Counting inversions: divide-and-conquer

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray 0 4 3 7 9 1 5 8 2 6

count inversions  
in right subarray 0 4 3 7 9 1 5 8 2 6

count inversions
with one element
in each subarray

0 4 3 7 9 1 5 8 2 6

4-3

1

5-2 8-2 8-6

3

3-1 3-2 4-1 4-2 7-1 7-2 7-5 7-6 9-1 9-2 9-5 9-6 9-8

13

1 + 3 + 13 = 17output 0 4 3 7 9 1 5 8 2 6

this step seems to
require n 2 time

47

Counting inversions: divide-and-conquer

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

and sort
0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray

and sort

0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element in

each sorted subarray
0 3 4 7 9 1 2 5 6 8 13

1 + 3 + 13 = 17and merge into 
sorted whole

0 1 2 3 4 5 6 7 8 9

What is running time of algorithm as a function of n?

A. Θ(n)

B. Θ(n log n)

C. Θ(n log2 n)

D. Θ(n 2)

Algorithm design: quiz 5

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

50

Randomized algorithms

Algorithm whose performance (or output) depends on the results

of random coin flips.

Familiar examples.

・Quicksort.

・Quickselect.

More classic examples.

・Rabin–Karp substring search.

・Miller–Rabin primality testing.

・Polynomial identity testing.

・Volume of convex body.

・Universal hashing.

・Global min cut.

…

51

Nuts and bolts

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.

・The goal is to find the corresponding pairs of nuts and bolts.

・Each nut fits exactly one bolt and each bolt fits exactly one nut.

・By fitting a nut and a bolt together, the carpenter can see which one is

bigger (but cannot directly compare either two nuts or two bolts).

Brute-force algorithm. Compare each bolt to each nut: Θ(n2) compares.

Challenge. Design an algorithm that makes O(n log n) compares.

Shuffle. Shuffle the nuts and bolts.

Partition.

・Pick leftmost bolt i and compare against all nuts; divide nuts smaller

than i from those that are larger than i.

・Let i ʹ be the nut that matches bolt i. Compare i ʹ against all bolts;

divide bolts smaller than i ʹ from those that are larger than i ʹ.

Divide-and-conquer. Recursively solve two subproblems.
52

Nuts and bolts

3 0 1 4 2 5 6 9 8 7bolts

2′ 1′ 4′ 0′ 3′ 5′ 7′ 8′ 9′ 6′nuts

5 3 6 0 9 1 4 8 2 7

7′ 2′ 8′ 1′ 5′ 9′ 4′ 0′ 6′ 3′

bolts

nuts

smaller nuts larger nuts

smaller bolts larger bolts

What is the expected running time of algorithm as a function of n?

A. Θ(n)

B. Θ(n log n)

C. Θ(n log2 n)

D. Θ(n 2)

Algorithm design: quiz 6

same analysis as quicksort
(but ~ 2n compares per partition instead of ~ n)

Hiring bonus. Algorithm that takes O(n log n) time in the worst case.

54

Nuts and bolts

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time

(Extended Abstract)

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(logn) t ime on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

1 Introduction

Given a set of n nuts of distinct widths and a set of n
bolts such that each nut corresponds to a unique bolt
of the same width, how should we match every nut with

‘Department of Mathematics, Rutgers University, P&&away,
NJ 08855. Email: komlos&nath.rutgem.edu.

‘Department of Computer Science, Stanford University,
CA 94305. Supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship. Part of the work was done
while the author was visiting DIMACS, and part of work
was done while he was at MIT and supported by DARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuanOcs.stanford.edu.

3Department of Computer Science, Rutgers University, Pis-
CataWay, NJ 08855. Part of the work was done while the au-
thor was at University of Paderborn, Germany. Email: sse-
mered@cs.rutgers.edu.

‘The work presented here is part of the “Hypercomputing &
Design” (HPCD) project; and it is supported (partly) by ARPA
under contract DABT-63-93-C-0064. ‘The content of the infor-
mation herein does not necessarily reflect the position of the
Government and official endorsement should not be inferred.

its corresponding bolt by comparing nuts with bolts (no
comparison is allowed between two nuts or between two
bolts)?

This problem can be naturally viewed as a variant
of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permu-
tation of the other, how should we sort the lists by
comparisons only between numbers in different lists?
In fact, the following simple reasoning illustrates that
the problem of matching nuts and bolts and the prob-
lem of sorting them have the same complexity, up to
a constant factor. On one hand, if the nuts and bolts
are sorted, then a nut and a bolt at the same position
in the sorted order certainly match with each other.
On the other hand, if the nuts and bolts are matched,
we can sort them by any optimal sorting algorithm in
O(n log n) time. Hence, the complexity equivalence of
sorting and matching them follows from the simple in-
formation lower bound of R(nlogn) on the matching
problem, which can be easily derived from the fact that
there are n! possible ways to match the nuts and bolts.
So in this paper, we will consider the problem of how
to sort the nuts and bolts, instead of matching them.

The problem of sorting nuts and bolts has a sim-
ple randomized algorithm (e.g., a simple variant of
the QUICKSORT algorithm) that runs in the opti-
mal O(n logn) expected time [8]. However, finding
a nontrivial (say, o(n2)-time) deterministic algorithm
has appeared to be highly nontrivial. Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3] designed an
O(n log4 n)-time deterministic algorithm based on ex-
pander graphs, and they posed the open question of de-
signing an optimal deterministic algorithm to the prob-
lem. Recently, Bradford and Fleischer [6] improved the
running time to O(n log’ n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been inten-
sively studied, it is natural to ask if any existing
O(n log n)-time deterministic sorting algorithm can be
easily adapted to sort nuts and bolts. In a certain sense,

232

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time

(Extended Abstract)

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(logn) t ime on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

1 Introduction

Given a set of n nuts of distinct widths and a set of n
bolts such that each nut corresponds to a unique bolt
of the same width, how should we match every nut with

‘Department of Mathematics, Rutgers University, P&&away,
NJ 08855. Email: komlos&nath.rutgem.edu.

‘Department of Computer Science, Stanford University,
CA 94305. Supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship. Part of the work was done
while the author was visiting DIMACS, and part of work
was done while he was at MIT and supported by DARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuanOcs.stanford.edu.

3Department of Computer Science, Rutgers University, Pis-
CataWay, NJ 08855. Part of the work was done while the au-
thor was at University of Paderborn, Germany. Email: sse-
mered@cs.rutgers.edu.

‘The work presented here is part of the “Hypercomputing &
Design” (HPCD) project; and it is supported (partly) by ARPA
under contract DABT-63-93-C-0064. ‘The content of the infor-
mation herein does not necessarily reflect the position of the
Government and official endorsement should not be inferred.

its corresponding bolt by comparing nuts with bolts (no
comparison is allowed between two nuts or between two
bolts)?

This problem can be naturally viewed as a variant
of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permu-
tation of the other, how should we sort the lists by
comparisons only between numbers in different lists?
In fact, the following simple reasoning illustrates that
the problem of matching nuts and bolts and the prob-
lem of sorting them have the same complexity, up to
a constant factor. On one hand, if the nuts and bolts
are sorted, then a nut and a bolt at the same position
in the sorted order certainly match with each other.
On the other hand, if the nuts and bolts are matched,
we can sort them by any optimal sorting algorithm in
O(n log n) time. Hence, the complexity equivalence of
sorting and matching them follows from the simple in-
formation lower bound of R(nlogn) on the matching
problem, which can be easily derived from the fact that
there are n! possible ways to match the nuts and bolts.
So in this paper, we will consider the problem of how
to sort the nuts and bolts, instead of matching them.

The problem of sorting nuts and bolts has a sim-
ple randomized algorithm (e.g., a simple variant of
the QUICKSORT algorithm) that runs in the opti-
mal O(n logn) expected time [8]. However, finding
a nontrivial (say, o(n2)-time) deterministic algorithm
has appeared to be highly nontrivial. Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3] designed an
O(n log4 n)-time deterministic algorithm based on ex-
pander graphs, and they posed the open question of de-
signing an optimal deterministic algorithm to the prob-
lem. Recently, Bradford and Fleischer [6] improved the
running time to O(n log’ n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been inten-
sively studied, it is natural to ask if any existing
O(n log n)-time deterministic sorting algorithm can be
easily adapted to sort nuts and bolts. In a certain sense,

232

Faculty lead preceptors

Undergraduate graders and lab TAs. Apply to be one next semester!

Ed tech. Several developed here at Princeton!

Credits

55

and graduate student AIs.

A final thought

56

A farewell video (from P04, Fall 2018)

A final thought

“ Algorithms and data structures are love.

 Algorithms and data structures are life. ”

 — anonymous COS 226 student

