3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Symbol table implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>equals()</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>\sqrt{n}</td>
<td>✓ compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>\sqrt{n}</td>
<td>✓ compareTo()</td>
</tr>
<tr>
<td>red-black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>✓ compareTo()</td>
</tr>
<tr>
<td>hashing</td>
<td>n</td>
<td>n</td>
<td>1^\dagger</td>
<td>equals()</td>
</tr>
</tbody>
</table>

† under suitable technical assumptions

Q. Can we do better?
A. Yes, but only with different access to the data.
Hashing: basic plan

Save key–value pairs in a **key-indexed table** (index is a function of the key).

Hash function. Function that maps a key to an array index.

Collision. Two distinct keys that hash to same index.

Issue. Collisions are inevitable.
- How to limit collisions?
- How to accommodate collisions?
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context

https://algs4.cs.princeton.edu
Designing a hash function

Required properties. [for correctness]

- Deterministic.
- Each key hashes to a table index between 0 and \(m - 1 \).

Desirable properties. [for performance]

- Very fast to compute.
- For any subset of \(n \) input keys, each table index gets approximately \(n/m \) keys.

leads to good hash-table performance
(\(m = 10, n = 20 \))

leads to bad hash-table performance
(\(m = 10, n = 20 \))
Designing a hash function

Required properties. [for correctness]

- Deterministic.
- Each key hashes to a table index between 0 and $m - 1$.

Desirable properties. [for performance]

- Very fast to compute.
- For any subset of n input keys, each table index gets approximately n / m keys.

Ex 1. Last 4 digits of U.S. Social Security number.

Ex 2. Last 4 digits of phone number.
Which is the last digit of your day of birth?

A. 0 or 1
B. 2 or 3
C. 4 or 5
D. 6 or 7
E. 8 or 9
Which is the last digit of your year of birth?

A. 0 or 1
B. 2 or 3
C. 4 or 5
D. 6 or 7
E. 8 or 9
Java’s `hashCode()` conventions

All Java classes inherit a method `hashCode()`, which returns a 32-bit `int`.

Requirement. If `x.equals(y)`, then `(x.hashCode() == y.hashCode())`.

Highly desirable. If `!x.equals(y)`, then `(x.hashCode() != y.hashCode())`.

Customized implementations. `Integer`, `Double`, `String`, `java.net.URL`, ...

Legal (but undesirable) implementation. Always return 17.

User-defined types. Users are on their own.
Implementing `hashCode()`: integers and doubles

Java library implementations

```java
public final class Integer {
    private final int value;
    ...

    public int hashCode() {
        return value;
    }
}
```

```java
public final class Double {
    private final double value;
    ...

    public int hashCode() {
        long bits = doubleToLongBits(value);
        return (int) (bits ^ (bits >>> 32));
    }
}
```

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits
Implementing hashCode(): arrays

31x + y rule.
- Initialize hash to 1.
- Repeatedly multiply hash by 31 and add next integer in array.

```java
public class Arrays
{
    ...

    public static int hashCode(int[] a) {
        if (a == null)
            return 0;  // special case for null

        int hash = 1;
        for (int i = 0; i < a.length; i++)
            hash = 31*hash + a[i];
        return hash;
    }
}
```

Java library implementation
Implementing hashCode(): user-defined types

public final class Transaction
{
 private final String who;
 private final Date when;
 private final double amount;

 public Transaction(String who, Date when, double amount)
 { /* as before */ }

 public boolean equals(Object y)
 { /* as before */ }

 ...

 public int hashCode()
 {
 int hash = 1;
 hash = 31*hash + who.hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + ((Double) amount).hashCode();
 return hash;
 }
}
Implementing hashCode(): user-defined types

```java
public final class Transaction
{
    private final String who;
    private final Date when;
    private final double amount;

    public Transaction(String who, Date when, double amount)
    { /* as before */ }

    public boolean equals(Object y)
    { /* as before */ }

    ...

    public int hashCode()
    {
        return Objects.hash(who, when, amount); /* shorthand */
    }
}
```
Implementing `hashCode()`

“Standard” recipe for user-defined types.

- Combine each significant field using the $31x + y$ rule.
- Shortcut 1: use `Objects.hash()` for all fields (except arrays).
- Shortcut 2: use `Arrays.hashCode()` for primitive arrays.
- Shortcut 3: use `Arrays.deepHashCode()` for object arrays.

Principle. Every significant field contributes to hash.

In practice. Recipe above works reasonably well; used in Java libraries.
Which function maps hashable keys to integers between 0 and m−1?

A.
```java
private int hash(Key key) {
    return key.hashCode() % m;
}
```

B.
```java
private int hash(Key key) {
    return Math.abs(key.hashCode()) % m;
}
```

C. Both A and B.

D. Neither A nor B.
Modular hashing

Hash code. An int between \(-2^{31}\) and \(2^{31} - 1\).

Hash function. An int between 0 and \(m - 1\) (for use as array index).

typically a prime or power of 2

```java
private int hash(Key key) {
    return key.hashCode() % m;
}
```

bug

```java
private int hash(Key key) {
    return Math.abs(key.hashCode()) % m;
}
```

1-in-a-billion bug

hashCode() of "polygenelubricants" is \(-2^{31}\)

```java
private int hash(Key key) {
    return (key.hashCode() & 0xffffffff) % m;
}
```

correct

if \(m\) is a power of 2, can use key.hashCode() & \((m-1)\)
Uniform hashing assumption

Uniform hashing assumption. Any key is equally likely to hash to one of m possible indices.

and independently of other keys
Uniform hashing assumption

Uniform hashing assumption. Any key is equally likely to hash to one of \(m \) possible indices.

Bins and balls. Toss \(n \) balls uniformly at random into \(m \) bins.

Bad news. [birthday problem]

- In a random group of 23 people, more likely than not that two people share the same birthday.
- Expect two balls in the same bin after \(\sim \sqrt{\pi \frac{m}{2}} \) tosses.

\(m = 16 \text{ bins, } n = 11 \text{ balls} \)

23.9 when \(m = 365 \)
Uniform hashing assumption

Uniform hashing assumption. Any key is equally likely to hash to one of m possible indices.

Bins and balls. Toss n balls uniformly at random into m bins.

![Diagram showing 16 bins and 11 balls]

$m = 16$ bins, $n = 11$ balls

Good news. [load balancing]

- When $n \gg m$, expect most bins to have approximately n / m balls.
- When $n = m$, expect most loaded bin has $\sim \ln n / \ln \ln n$ balls.

![Histogram showing hash value frequencies for words in Tale of Two Cities (m = 97)]
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Collisions

Collision. Two distinct keys that hash to the same index.

- Birthday problem \Rightarrow can’t avoid collisions. unless you have a ridiculous (quadratic) amount of memory
- Load balancing \Rightarrow no index gets too many collisions.
 \Rightarrow ok to scan through all colliding keys.

\[
\text{hash("USA") } = 3 \\
\text{hash("ITA") } = 3
\]
Separate-chaining hash table

Use an array of \(m \) linked lists.
- Hash: map key to table index \(i \) between 0 and \(m - 1 \).
- Insert: add key–value pair at front of chain \(i \) (if not already in chain).

separate-chaining hash table (\(m = 4 \))

\[
\begin{align*}
\text{put}(L, 11) \\
\text{hash}(L) &= 3
\end{align*}
\]
Separate-chaining hash table

Use an array of \(m \) linked lists.

- Hash: map key to table index \(i \) between 0 and \(m - 1 \).
- Insert: add key–value pair at front of chain \(i \) (if not already in chain).
- Search: perform sequential search in chain \(i \).

Separate–chaining hash table (\(m = 4 \))

get(E)
hash(E) = 1
Separate-chaining hash table: Java implementation

```java
public class SeparateChainingHashST<Key, Value>
{
    private int m = 128; // number of chains
    private Node[] st = new Node[m]; // array of chains

    private static class Node
    {
        private Object key;
        private Object val;
        private Node next;
        ...
    }

    private int hash(Key key)
    { return (key.hashCode() & 0x7fffffff) % m; }

    public Value get(Key key) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) return (Value) x.val;
        return null;
    }
}
```
public class SeparateChainingHashTable<Key, Value> {
 private int m = 128; // number of chains
 private Node[] st = new Node[m]; // array of chains

 private static class Node {
 private Object key;
 private Object val;
 private Node next;
 ...
 }

 private int hash(Key key) {
 return (key.hashCode() & 0x7fffffff) % m;
 }

 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) {
 x.val = val;
 return;
 }
 st[i] = new Node(key, val, st[i]);
 }
}
Analysis of separate chaining

Recall load balancing. Under uniform hashing assumption, length of each chain is tightly concentrated around mean $= n / m$.

Consequence. Expected number of probes for search/insert is $\Theta(n / m)$.

- m too small \Rightarrow chains too long.
- m too large \Rightarrow too many empty chains.
- Typical choice: $m \sim \frac{1}{4} n$ \Rightarrow $\Theta(1)$ time for search/insert.
Resizing in a separate-chaining hash table

Goal. Average length of list $n/m = \text{constant}$.

- Double length m of array when $n/m \geq 8$.
- Halve length m of array when $n/m \leq 2$.
- Note: need to rehash all keys when resizing.

before resizing ($n/m = 8$)

![Diagram of hash table before resizing]

after resizing ($n/m = 4$)

![Diagram of hash table after resizing]

x.hashCode() does not change; but hash(x) typically does
How to delete a key–value pair from a separate–chaining hash table?

A. Search for key; remove key–value pair from linked list.

B. Compute hash of key; reinsert all other key–value pairs in chain.

C. Either A or B.

D. Neither A nor B.
Symbol table implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered ops?</th>
<th>Key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>log n</td>
<td>n</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td>red-black BST</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
</tr>
<tr>
<td>separate chaining</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>✓ ✓ ✓</td>
</tr>
</tbody>
</table>

† under uniform hashing assumption
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Linear-probing hash table

- Maintain key–value pairs in two parallel arrays, with one key per cell.
- Resolve collisions by probing: search successive cells until either finding the key or an unused cell.

Inserting into a linear-probing hash table.

linear-probing hash table

<table>
<thead>
<tr>
<th>keys[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>M</td>
<td></td>
<td>A</td>
<td>C</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vals[]</td>
<td>11</td>
<td>10</td>
<td></td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

put(K, 14)

hash(K) = 7

K

14
Linear-probing hash table

- Maintain key–value pairs in two parallel arrays, with one key per cell.
- Resolve collisions by probing: search successive cells until either finding the key or an unused cell.

Searching in a linear-probing hash table.

Linear-probing hash table

<table>
<thead>
<tr>
<th>keys[]</th>
<th>P</th>
<th>M</th>
<th>A</th>
<th>C</th>
<th>H</th>
<th>L</th>
<th>K</th>
<th>E</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>vals[]</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

- get(K) hash(K) = 7
- get(Z) hash(Z) = 8

K Z
Linear-probing hash table demo

Hash. Map key to integer i between 0 and $m - 1$.
Insert. Put at table index i if free; if not try $i + 1, i + 2, \ldots$.
Search. Search table index i; if occupied but no match, try $i + 1, i + 2, \ldots$.

Note. Array length m must be greater than number of key–value pairs n.

<table>
<thead>
<tr>
<th>keys[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

$m = 16$
Linear-probing symbol table: Java implementation

```java
public class LinearProbingHashST<Key, Value>
{
    private int m = 32768;
    private Value[] vals = (Value[]) new Object[m];
    private Key[] keys = (Key[]) new Object[m];

    private int hash(Key key)
    { return (key.hashCode() & 0x7fffffff) % m; }

    private void put(Key key, Value val) { /* next slide */ }

    public Value get(Key key)
    { for (int i = hash(key); keys[i] != null; i = (i+1) % m)
        if (key.equals(keys[i]))
            return vals[i];
    return null;
    }
}
```
Linear-probing symbol table: Java implementation

```java
public class LinearProbingHashST<Key, Value> {
    private int m = 32768;
    private Value[] vals = (Value[]) new Object[m];
    private Key[] keys = (Key[]) new Object[m];

    private int hash(Key key) {
        return (key.hashCode() & 0x7fffffff) % m;
    }

    private Value get(Key key) {
        /* prev slide */
    }

    public void put(Key key, Value val) {
        int i;
        for (i = hash(key); keys[i] != null; i = (i+1) % m)
            if (keys[i].equals(key))
                break;
        keys[i] = key;
        vals[i] = val;
    }
}
```
Under the uniform hashing assumption, where is the next key most likely to be added in this linear-probing hash table (no resizing)?

A. Index 7.
B. Index 14.
C. Either index 4 or 14.
D. All open indices are equally likely.
Cluster. A contiguous block of keys.

Observation. New keys disproportionately likely to hash into big clusters.
Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a linear-probing hash table of size m that contains $n = \alpha m$ keys is at most

$$\frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

search hit

$$\frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$

search miss / insert

Pf. [beyond course scope]

Parameters.

- m too large \Rightarrow too many empty array entries.
- m too small \Rightarrow search time blows up.
- Typical choice: $\alpha = n / m \sim \frac{1}{2}$.
 # probes for search hit is about $3/2$
 # probes for search miss is about $5/2$
Resizing in a linear-probing hash table

Goal. Average length of list $n/m \leq \frac{1}{2}$.
- Double length of array m when $n/m \geq \frac{1}{2}$.
- Halve length of array m when $n/m \leq \frac{1}{8}$.
- Need to rehash all keys when resizing.

before resizing

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys[]</td>
<td>E</td>
<td>S</td>
<td></td>
<td>R</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vals[]</td>
<td>1</td>
<td>0</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after resizing

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys[]</td>
<td></td>
<td></td>
<td>A</td>
<td>S</td>
<td></td>
<td>E</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vals[]</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
How to delete a key-value pair from a linear-probing hash table?

A. Search for key; remove key-value pair from arrays.

B. Search for key; remove key-value pair from arrays.
 Shift all keys in cluster after deleted key 1 position to left.

C. Either A and B.

D. Neither A nor B.

<table>
<thead>
<tr>
<th>keys</th>
<th>vals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

cluster after deleted key
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red-black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>separate chaining</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>1^\dagger</td>
</tr>
<tr>
<td>linear probing</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>1^\dagger</td>
</tr>
</tbody>
</table>

† under uniform hashing assumption
3-Sum (revisited)

3-Sum. Given n distinct integers, find three such that $a + b + c = 0$.

Goal. $\Theta(n^2)$ expected time; $\Theta(n)$ extra space.
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A1. Yes: aircraft control, nuclear reactor, pacemaker, HFT, ...

Real-world exploits. [Crosby–Wallach 2003]
- Linux 2.4.20 kernel: save files with carefully chosen names.
- Bro server: send carefully chosen packets to DoS the server, using less bandwidth than a dial-up modem.
War story: algorithmic complexity attacks

A Java bug report.

Julian Wälde and Alexander Klink reported that the String.hashCode() hash function is not sufficiently collision resistant. hashCode() value is used in the implementations of HashMap and Hashtable classes:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of HashMap or Hashtable by changing hash table operations complexity from an expected/average $O(1)$ to the worst case $O(n)$. Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle techniques.

This problem can be used to start a denial of service attack against Java applications that use untrusted inputs as HashMap or Hashtable keys. An example of such application is web application server (such as tomcat, see bug #750521) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote attack could use that to make JVM use excessive amount of CPU time by sending a POST request with large amount of parameters which hash to the same value.

This problem is similar to the issue that was previously reported for and fixed in e.g. perl:

https://bugzilla.redhat.com/show_bug.cgi?id=750533
Hashing: file verification

When downloading a file from the web:

- Vendor publishes hash of file.
- Client checks whether hash of downloaded file matches.
- If mismatch, file corrupted.
 (e.g., error in transmission or infected by virus)

```
~/Desktop> sha256sum ideaIC-2019.3.3.dmg
  c62ed2df891ccbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270
```
Hashing: cryptographic applications

One-way hash function. “Hard” to find a key that will hash to a desired value (or two keys that hash to same value).

Ex. MD5, SHA-1, SHA-256, SHA-512, Whirlpool,

known to be insecure

Applications. File verification, digital signatures, cryptocurrencies, password authentication, blockchain, Git commit identifiers,
Separate chaining vs. linear probing

Separate chaining.
- Performance degrades gracefully.
- Clustering less sensitive to poorly-designed hash function.

Linear probing.
- Less memory.
- Better cache performance.
- More probes because of clustering.
Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [separate-chaining variant]
- Hash to two positions, insert key in shorter of the two chains.
- Reduces expected length of the longest chain to $\Theta(\log \log n)$.

Double hashing. [linear-probing variant]
- Resolve collisions by probing, but skip a variable amount instead of +1.
- Effectively eliminates clustering.
- Can allow table to become nearly full.
- More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]
- Hash key to two positions; insert key into either position; if occupied, reinsert displaced key into its alternative position (and recur).
- $\Theta(1)$ time for search in worst case.
Hash tables vs. balanced search trees

Hash tables.
- Simpler to code.
- Typically faster in practice.
- No effective alternative for unordered keys.

Balanced search trees.
- Stronger performance guarantee.
- Support for ordered ST operations.
- Easier to implement compareTo() than hashCode().

Java system includes both.
- BSTs: java.util.TreeMap, java.util.TreeSet.

<table>
<thead>
<tr>
<th>BST possibilities</th>
<th>best case</th>
<th>typical case</th>
<th>worst case</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>E</td>
<td>C</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

red–black BST

separate chaining
(if chain gets too long, use red–black BST for chain)