3.2 Binary Search Trees

- BSTs
- ordered operations
- iteration
3.2 Binary Search Trees

- BSTs
- ordered operations
- iteration
Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
- [Duplicate keys not permitted.]
Which of the following properties hold?

A. If a binary tree is heap ordered, then it is symmetrically ordered.
B. If a binary tree is symmetrically ordered, then it is heap ordered.
C. Both A and B.
D. Neither A nor B.
Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Insert. If less, go left; if greater, go right; if null, insert.

insert G

```
Binary search tree demo

S
 /     \
E       X
 /     /   \
A     R
 /     /   \
C     H
 /     /   \
G     M
```
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

```java
private class Node {
    private Key key;
    private Value val;
    private Node left, right;

    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}

Key and Value are generic types; Key is Comparable
```

Binary search tree

BST representation in Java
public class BST<Key extends Comparable<Key>, Value> {

 private Node root;

 private class Node
 { /* see previous slide */
 }

 public void put(Key key, Value val)
 { /* see slide in this section */
 }

 public Value get(Key key)
 { /* see next slide */
 }

 public Iterable<Key> keys()
 { /* see slides in next section */
 }

 public void delete(Key key)
 { /* see textbook */
 }

 }
Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares = 1 + depth of node.
BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree ➞ reset value.
- Key not in tree ➞ add new node.

Insertion into a BST

- **inserting L**
- **search for L ends at this null link**
- **create new node**
- **reset links on the way up**

10
BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;

    return x;
}
```

Warning: concise but tricky code; read carefully!

Cost. Number of compares = 1 + depth of node.
Many BSTs correspond to same set of keys.
Number of compares for search/insert = 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.
Ex. Insert keys in random order.

N = 255
max = 16
avg = 9.1
opt = 7.0
Suppose that you insert n keys in random order into a BST. What is the expected height of the resulting BST?

A. $\sim \lg n$

B. $\sim \ln n$

C. $\sim 2 \lg n$

D. $\sim 2 \ln n$

E. $\sim 4.31107 \ln n$
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log n$</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

Why not shuffle to ensure a (probabilistic) guarantee of $\Theta(\log n)$ time?
3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations
In which order does traverse(root) print the keys in the BST?

A. A C E H M R S X
B. S E A C R H M X
C. C A M H R E X S
D. S E X A R C H M
Inorder traversal

```plaintext
inorder(S)
inorder(E)
inorder(A)
  print A
inorder(C)
  print C
done C
done A
print E
inorder(R)
inorder(H)
  print H
inorder(M)
  print M
done M
done H
print R
done R
done E
print S
inorder(X)
  print X
done X
done S
```

output: A C E H M R S X
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

```java
public Iterable<Key> keys() {
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q) {
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```
Inorder traversal: running time

Property. Inorder traversal of a binary tree with n nodes takes $\Theta(n)$ time.
Level-order traversal of a binary tree.

- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.
- ...

level-order traversal: S E T A R C H M
Q1. How to compute level-order traversal of a binary tree in $\Theta(n)$ time?

level-order traversal: S E T A R C H M
Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

Ex. SET AR CH M

needed for Quizzera quizzes
3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations
Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

Q. How to find the min / max?
Floor and ceiling

Floor. Largest key in BST \leq query key.
Ceiling. Smallest key in BST \geq query key.
Computing the floor

Floor. Largest key in BST ≤ query key.

Key idea.

- To compute floor(key), search for key.
- Both floor(key) and ceiling(key) must be on search path.
- Moreover, as you go down search path, any candidates get better and better.
Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x.

Invariant 2. Node x is in the right subtree of node containing champ.

```java
public Key floor(Key key) {
    return floor(root, key, null); }

private Key floor(Node x, Key key, Key champ) {
    if (x == null) return champ;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return floor(x.left, key, champ);
    else if (cmp > 0) return floor(x.right, key, x.key);
    else if (cmp == 0) return x.key;
}
```
Rank and select

Rank. How many keys $< key$?

Select. Key of rank k.

Q. How to implement rank() and select() efficiently for BSTs?

A. In each node, store the number of nodes in its subtree.
BST implementation: subtree counts

```java
private class Node {
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int size;
}

private int size(Node x) {
    if (x == null) return 0;
    return x.size;
}

public int size() {
    return size(root);
}

private int size() {
    return size(root);
}
```

Number of nodes in subtree

```java
private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;

    x.size = 1 + size(x.left) + size(x.right);
    return x;
}
```

Initialize subtree size to 1

- `int cmp = key.compareTo(x.key)`
 - `cmp < 0` => `x.left = put(x.left, key, val)`
 - `cmp > 0` => `x.right = put(x.right, key, val)`
 - `cmp == 0` => `x.val = val`

OK to call when x is null

- `if (x == null) return 0;`
Computing the rank

Rank. How many keys < key?

Case 1. [key < key in node]
- Keys in left subtree? \(\text{count} \)
- Key in node? 0
- Keys in right subtree? 0

Case 2. [key > key in node]
- Keys in left subtree? \(\text{all} \)
- Key in node. 1
- Keys in right subtree? \(\text{count} \)

Case 3. [key = key in node]
- Keys in left subtree? \(\text{count} \)
- Key in node. 0
- Keys in right subtree? 0
Rank: Java implementation

Rank. How many keys < key?

Easy recursive algorithm (3 cases!)

```
public int rank(Key key)
{   return rank(key, root); }

private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```
BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th></th>
<th>sequential search</th>
<th>binary search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>n</td>
<td>$\log n$</td>
<td>h</td>
</tr>
<tr>
<td>insert</td>
<td>n</td>
<td>n</td>
<td>h</td>
</tr>
<tr>
<td>min / max</td>
<td>n</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>n</td>
<td>$\log n$</td>
<td>h</td>
</tr>
<tr>
<td>rank</td>
<td>n</td>
<td>$\log n$</td>
<td>h</td>
</tr>
<tr>
<td>select</td>
<td>n</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>$n \log n$</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

$h = \text{height of BST}$

order of growth of running time of ordered symbol table operations
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td></td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>equals()</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log n$</td>
<td>n</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>red–black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>✔ compareTo()</td>
</tr>
</tbody>
</table>

Next lecture. BST whose height is guaranteed to be $\Theta(\log n)$.