A 1 g() I 1 [ h Ims ROBERT SEDGEWICK | KEVIN WAYNE

2.3 QUICKSORT

» quicksort
» selection
» duplicate keys

» system sorts

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
« Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
« Quicksort honored as one of top 10 algorithms of 20™" century

in science and engineering.

Mergesort. [last lecture]

G @ s C

Guicksort. [this lecture]

S
-~ —

\_




Quicksort t-shirt

eturn al[lol; ¥ p
void exch(Object[] a,
ole[] a) { return
(int 1 = lo + 1;
private static void show arable[] a) { for (in
static void main(Stringl[] { String[] a = StdIn.re.
(Int 1 =0; 1 < & gth; i++) { String ith = (String) Quick.
Jblic class Quick { public static sort(Comparable[] a) { Si
static volid sort(Compar ell a. int 1o, int hi) { if (hi <
(a, lo, j=1); sort(a art 3 ed(a, lo,
hi) { int ! + 1; Comparable
( lo) break;
le[] a, int k)
indom. shuff le
1; else if (i
t v, Lomparapole w) { return (
p = alil; alil = aljl; alj] = swap
1 - 1); } private static boo
s(ali], al[i-1])) return fal
int 1 @; 1 < a.length; i++) { StdOut.println(alil)
C s(); Quick.sort(a); show(a); StdOut
ring) Quick.se t(a, 1); StdOut.println(ith); o
ndom.shuffle(a); sort(a, @, a.length 1); } priv
eturn; int j = partition(a, lo, hi); sort(a, lr
tatic int partition(Co
) { while (less(a[++1i]
a, j); } exch(a, lo
"ow new Runtim
a. length 1;

static v

t main(String
i
class Quick { public

c void sort(Comparablel]

D, 1); t(a, 1+1, hi);

CS @ Princeton




A brief history

Tony Hoare.

« Invented quicksort to translate Russian into English.

« Learned Algol 60 (and recursion) to implement it.

ALGORITHM 64

QUICKSORT

C. A. R. Hoarg

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer LJ;
if M < N then begin partition (A,M,N,LJ);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

Bob Sedgewick.

Programming S. L. Graham, R. L. Rivest
Techniques Editors
Implementing

Quicksort Programs

Robert Sedgewick
Brown University

This paper is a practical study of how to implement
the Quicksort sorting algorithm and its best variants on
real computers, including how to apply various code

izati i A detailed i
combining the most effective improvements to
Quicksort is given, along with a discussion of how to
implement it in assembly language. Analytic results

the of the are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort’s wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Acta Informatica 7, 327—355 (1977)
© by Springer-Verlag 1977

The Analysis of Quicksort Programs™
Robert Sedgewick
Received January 19, 1976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters. of Quicksort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper isintended not only to present results of direct practical utility,
but also to illustrate the intrigning mathematics which arises in the complete analysis
of this important algorithm.

« Refined and popularized quicksort.

« Analyzed many versions of quicksort.

Tony Hoare
1980 Turing Award

Bob Sedgewick



2.3 QUICKSORT

» quicksort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Quicksort overview

Step 1. Shuffle the array.
Step 2. Partition the array so that, for some j @
. Entry aljl IS 1IN place_ <«—— ‘“pivot” or “partitioning item”

« No larger entry to the left of j.

« No smaller entry to the right of j.
Step 3. Sort each subarray recursively.

nput Q U I C K S O R T E X A M P L E

shufle K AT E L E P U I M Q C
partitioning item
partiton E C A I E K L P U T M Q R X 0 S
™ not greater not less =~

sortlet A C E E 1
sort right L M O P Q R
resut A C E E I K L M O P Q R S T U X



Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).

« Scan j from right to left so long as (a[j] > a[lo]).

« Exchange a[i] with a[j].




Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o] with a[j].

partitioned!



The music of quicksort partitioning (by Brad Lyon)

New New (Small) Increasing Decreasing

Naxt Step Do Auto

land el nene ol e

The value was larger than [We will now start coming]
the pivot, so the lower down from the right
one waits while the upper
one comes down

https://learnforeverlearn.com/pivot_music


https://learnforeverlearn.com/pivot_music

Quicksort partitioning: Java implementation

before |v
)

To

private static int partition(Comparable[] a, int lo, int hi)

{

int 1 = lo, J = hi+l;
while (true)

{
while (less(a[++1], a[lo]))
1t (1 == hi) break;
while (less(a[Tlo]l, a[--j]1))
if (J == 1o) break;
it (1 >= j) break;
exch(a, i, j);
}
exch(a, lo, j);
return j;
during VI =V ‘
f f
hi i

after

10


https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort quiz 1 i

In the worst case, how many compares and exchanges does partition()
make to partition a subarray of length n?

A. ~¥%Bnand ~%n
B. ~%n and ~n
C. ~nand ~%n

D. ~n and ~n

11



Quicksort: Java implementation

public class Quick

{
private static int partition(Comparable[] a, int lo, int hi)
{ }
public static void sort(Comparable[] a)
{
StdRandom.shuffle(a);
sort(a, 0, a.length - 1);
}
private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= 10) return;
int Jj = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}

12


https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort trace

1o
initial values

random shuffle

/ :
no partition 7

for subarrays

of sizel T~ /

10
10
10

o O OO

14

result

O N W U

N O O

13
12
11

14

= N B U

15
15

15
12
11

15

>>mMmRXLO|IO
OO NN XxCE
m > > > H|N
m e — MW
HmmX|>

A~ njiu,
—moo

U U I

cC c —|o

— H m|©

== X|O

=X 7T
O O OC

oo xTW0n

A.CE E I K L M O P Q

Quicksort trace (array contents after each partition)

oo x|

oo

00

AN =< (N

S

n

X X TO|(w

Oor |&

c

N N mou

n n

13



Quicksort animation

50 random items

http:/ /www.sorting-algorithms.com/quick-sort

>

algorithm position
in order
current subarray

not in order

14


http://www.sorting-algorithms.com/quick-sort
http://www.sorting-algorithms.com/quick-sort

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but it is not worth the cost.

Loop termination. Terminating the loop is more subtle than it appears.
Equal keys. Handling duplicate keys is trickier that it appears. [stay tuned]

Preserving randomness. Shuffling is needed for performance guarantee.
Equivalent alternative. Pick a random pivot in each subarray.

‘;&, : 7N

15



Quicksort: empirical analysis (1962)

Running time estimates:

« Algol 60 implementation.

« National Elliott 405 computer.

Table 1

NUMBER OF ITEMS

MERGE SORT

QUICKSORT

500
1,000
1,500
2,000

|
| 2 min & sec
4 min 48 sec

| & min 15 sec*

Il min O sec*

] min 21 sec
3 min & sec
S5min 6 sec
6 min 47 sec

* These figures were computed by formula, since they cannot

be achieved on the 405 owing to limited store size.

sorting n 6-word items with 1-word keys

Elliott 405 magnetic disc
(16K words)

16



Quicksort: empirical analysis

Running time estimates:
« Home PC executes 108 compares/second.
. Supercomputer executes 10'%2 compares/second.

insertion sort (n2) mergesort (n log n) quicksort (n log n)

0.6 sec

home instant 2.8 hours 317 years instant 1 second 18 min instant

super instant 1 second 1 week instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

instant

12 min

instant

17



Quicksort quiz 2

Why do you think quicksort is faster than mergesort in practice?

Fewer compares.
Less data movement.

Both A and B.

o N ® »

Neither A nor B.

18



1S

worst-case analysi

Quicksort

Worst case. Number of compares is ~ 1 n?.

al ]

6 7 8 9 10 11 12 13 14

G
G
G
G

5
F
F
F
F

4

3

hi
A B C D

lo

K L M N O

J
J
J
J
J
J
J
J
J
J
J
J

E
E
E
E

after random shuffle

K L M N O <

K L M N O

B C D

14 A B C D

14
14
14
14
14
14
14
14
14

10 14
11
12
13

A

0

0

K L M N O

B C D

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

10
11
12
13

L M N O

14

© O O

Z Z

14
14

J K L M N O

G

F

E

A B C D

19



Quicksort: worst-case analysis

Worst case. Number of compares is ~ 1 n?.

al ]

lo ] hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A B C D E F GH I J K L M NDO
A B C D E F GH I J K L M N O =« after random shuffle

Good news. Worst case for quicksort is mostly irrelevant in practice.
« Exponentially small chance of occurring.
(unless bug in shuffling or no shuffling)
« More likely that computer is struck by lightning bolt during execution.

20



Quicksort: probabilistic analysis

Proposition. The expected number of compares C, to quicksort an array of
n distinct keys is ~2nInn (and the number of exchanges is ~¥3nlnn).

Recall. Any algorithm with the following structure takes ®(n log n) time.

public static void f(int n)

{

if (n == 0) return;

f(n/2); solve two problems

f(n/2); of half the size

Tinear(n); do a linear amount of work
}

Intuition. Each partitioning step divides the problem into two subproblems,
each of approximately one-half the size.

T

“close enough”

21



Quicksort: probabilistic analysis

Proposition. The expected number of compares C, to quicksort an array of
n distinct keys is ~2n1nn (and the number of exchanges is ~¥snlnn).

Pf. C, satisfies the recurrence C,=C,=0 and forn = 2:

partitioning Ieift rifht
Co+C,_ Cy+C,_ Cn-1+C
C’n:(n+1)+<0 1>+(1+ 2>+...+< 1+0)
n n n
« Multiply both sides by n and collect terms: SEHHEnE) prelsaolisy

nC, = nn+1) + 2(Co+C1+...+Cp_1)

« Subtract from this equation the same equation for n - 1:

nCp, — n—1)C,,_1 = 2n + 2C,_1

« Rearrange terms and divide by n (n + 1):

C, C,_1 2
n+1 n n+1

22



Quicksort: probabilistic analysis

« Repeatedly apply previous equation:

Ch Ch_1 2
= +
n+1 n n+1
— Cn_Z + g + 2 <«—— substitute previous equation
n—1 n n+ 1
O3 N 2 N 2 N 2
 n-—2 n—1 n n+1
_ 2 + . + - + + :
3 4 5 77 n+1
« Approximate sum by an integral:
1 1 1 1
C, = 2 H{=4+-4+=+4 ...
(n+ )(3+4+5+ +n+1>
~ 2(n—|—1)/ —dx
3 X

« Finally, the desired result:

[C’n ~ 2(n+1)Inn = 1.39nlgnj

23



Quicksort properties

39% more than mergesort

Quicksort analysis summary.
« Expected number of compares is ~1.39 n g n.

« Expected number of exchanges IS ~0.23 nlg n. «— less data movement than mergesort

 Min number of compares is ~ n lg n. <«— never fewer than mergesort
* Max number of compares is ~ 4 n?. <«— but never happens

Context. Quicksort is a (Las Vegas) randomized algorithm.

- Guaranteed to be correct.
« Running time depends on outcomes of random coin flips (shuffle).

24



Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.
« Partitioning: ©(1) extra space.
« Function-call stack: ®(og n) extra space (with high probability).

AN

can guarantee O(log n) depth by recurring

on smaller subarray before larger subarray
(but requires using an explicit stack)

Proposition. Quicksort is not stable.
Pf. [ by counterexample ]

B C C2 Aj

25



Quicksort: practical improvements

Insertion sort small subarrays.
« Even quicksort has too much overhead for tiny subarrays.
« Cutoff to insertion sort for = 10 items.

private static void sort(Comparable[] a, int lo, int hi)

{
if (hi <= To + CUTOFF - 1)
{
Insertion.sort(a, 1o, hi);
return;
}

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);



Quicksort: practical improvements

Median of sample.
« Best choice of pivot item = median.
- Estimate true median by taking median of sample.
« Median-of-3 (random) items.

N

~ 12/7 nln n compares (14% fewer)

~ 12/35 n In n exchanges (3% more)

private static void sort(Comparable[] a, int lo, 1nt hi)

{

if (hi <= 10) return;

int median medianOf3(a, lo, lo + (hi - 1o)/2, hi);
swap(a, lo, median);

int jJ = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

27



2.3 QUICKSORT

» selection

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Selection

Goal. Given an array of » items, find item of rank «.
Ex. Min (k=0), max (k=n-1), median (k=n/2).

Applications.
« Order statistics.
* Find the “top k.”

Use complexity theory as a guide.
« Easy O(nlog n) algorithm. How?
« Easy O(n) algorithm for k=0,1,2. How?
« Easy Q(n) lower bound. Why?

Which is true?
* O(n) algorithm? [ is there a linear-time algorithm? ]

« Q(nlogn) lower bound? [ is selection as hard as sorting? ]

29



Quick-select

Partition array so that:
« Entry a[j] is in place.

O

« No larger entry to the left of j.
« No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)
{

if a[k] is here if a[k] is here

StdRandom.shuffle(a); set hi to §-1 set 10 to j+1

int lo = 0, hi = a.length - 1;

wirle @l = 16 \ /
{

int j = partition(a, lo, hi);

= =2V
if G <k To=3+1; 1 M |\1/| 1
else 1f (3 > k) hi = 3] - 1; To j hi
else return al[k];

}

return alk];

30



Quick-select: probabilistic analysis

Proposition. The expected number of compares C, to quick-select

the item of rank k in an array of length n is O(n).

“close enough”

/

Intuition. Each partitioning step approximately halves the length of the array.
Recall. Any algorithm with the following structure takes ®(n) time.

public static void f(int n)

{
if (n == 0) return;
Tinear(n); do a linear amount of work n+n/2+n/4+..+1 ~2n
f(n/2); solve one problem of half the size

}

Careful analysis yields: C, ~2n +2kln(n/k) +2(m—k)In (n/(n-k))
<(2+2In2)n
~ 3.38n

31



Quicksort quiz 3

”

What is the worst-case running time of quick select?

A. O®)
B. O(nlogn)
C. Omd
D. ©2"

32



Theoretical context for selection

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan, 1973] Compare-based
selection algorithm whose worst-case running time is linear.

Time Bounds for Selection™

ManueL Brum, RoBERT W. FLoYD, VAUGHAN PRATT,
RoNaLDp L. Rivest, AND ROBERT E. TARjAN

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

The number of comparisons required to select the -th smallest of # numbers is shown
to be at most a linear function of » by analysis of a new selection algorithm—PICK.
Specifically, no more than 54305 n comparisons are ever required. This bound is
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons is also proved.

Remark. Constants are high = not used in practice.

Use theory as a guide.

o Still worthwhile to seek practical linear-time (worst-case) algorithm.
« Until one is discovered, use quick-select (if you don’t need a full sort).

33



2.3 QUICKSORT

Algorithms » duplicate keys

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

« Sort population by age.
« Remove duplicates from mailing list.
« Sort job applicants by college attended.

Typical characteristics of such applications.
- Huge array.
« Small number of key values.

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoenix
Phoenix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

|

key

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

25:
03:
21:
19:
19:
00:
35:
00:
01:
00:
37:
00:
14:
10:
36:
143
10:
22:

22

52
13
05
46
32
00
21
59
10
13
44
03
25
25
14

11
54

35



Quicksort quiz 4

When partitioning, how to handle keys equal to partitioning key?

C. Either A or B.

36



War story (system sort in C)

Bug. A gsort() call in C that should have taken seconds was taking
minutes to sort a random array of Os and 1s.

Why is gqsort() so slow?
— o

—

Ay A A A A A A A Ay Ay Ay skip over equal keys
) )
i J
Ay A Ay Ay A A A A Ay Ay Ay stop scan on equal keys

) )

i J

37



Duplicate keys: partitioning strategies

Bad. Don’t stop scans on equal keys.

[ ©(n?) compares when all keys equal ]

BAABABB[B|JCCC

Good. Stop scans on equal keys.

AAAAAAAAAANA

[ ~nlgn compares when all keys equal ]

BAABAB|JCCBCB

Better. Put all equal keys in place. How?
[ ~n compares when all keys equal

AAABBBBB|CCC

AAAAAAAAAAA

]
AAAAAAAAAAA|

38



DUTCH NATIONAL FLAG PROBLEM

Problem. [Edsger Dijkstra] Given an array of n buckets, each containing a
red, white, or blue pebble, sort them by color.

-~ il H
ot [ R |

Operations allowed.

« swap(i,j): swap the pebble in bucket i with the pebble in bucket ;.
« getColor(i): determine the color of the pebble in bucket .

Performance requirements.
« Exactly n calls to getColor().
« At most n calls to swap().
« Constant extra space.

39



3-way partitioning

Goal. Use pivot v = a[lo] to partition array into three parts so that:

« Red: smaller entries to the left of 1t.

« White: equal entries between 1t and gt.

« Blue: larger entries to the right of gt.

before

after

1o

<V

>V

1o

1t

40



Dijkstra’s 3-way partitioning algorithm: demo

« Letv = a[lo] be pivot.

« Scan i from left to right and compare a[i] to v.
— less: exchange a[1t] with a[i]; increment both 1t and 1

— greater: exchange a[gt] with a[i]; decrement gt

— equal: increment i

It i

vy
D B X W P2 Ps3 \Y P4 A Ps
)
lo
invariant
<V =V

>V

>

gt

gt

41



Dijkstra’s 3-way partitioning algorithm: demo

« Letv = a[lo] be pivot.
« Scan i from left to right and compare a[i] to v.
— less: exchange a[1t] with a[i]; increment both 1t and 1

— greater: exchange a[gt] with a[i]; decrement gt
— equal: increment i

less equal greater

hi

42



3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, i1nt hi)

{

if (hi <= 10) return;
int 1t = lo, gt = hi;
Comparable v = a[lo];
int 1 = lo + 1;
while (1 <= gt)

{
int cmp = a[i1].compareTo(v);
if (cmp < 0) exch(a, Tt++, 1++);
else if (cmp > 0) exch(a, 1, gt--);
else 1++;
}
before |V
sort(a, lo, 1t - 1); o N
sort(a, gt + 1, h-l), during <V =V >V
f } f
1t 1 gt
after <V =V >V

43



3-way quicksort: visual trace

THTLHT I
equal to partitioning element

N
NIRRT LTV CAEEERCTRTOITY
........m||||||||||||||||||||||IIIIIIIIIIII||||||||||||||||||||||"""|"""""""""""""

44



Quicksort quiz 5 |>

Which is worst-case number of compares to 3-way quicksort an array
of length n containing only 5 distinct values?

A. O®)
B. O(nlog n)
C. Omd)
D. ©2"

- JHESNENSETEETENETENY.
rored EREEEN HEEEN

45



Sorting summary

inplace? | stable? “ average

v

v

15 n?

Yanlgn

nlgn

15 n?

lin?

nlgn

nlgn

2nlnn

2nlnn

nlgn

b n?

b n?

nlgn

nlgn

b n?

b n?

nlgn

remarks

n exchanges

use for small n
or partially sorted arrays

n log n guarantee;
stable

improves mergesort
when pre-existing order

n log n probabilistic guarantee;
fastest in practice

improves quicksort
when duplicate keys

holy sorting grail

46



2.3 QUICKSORT

Algorithms

» system sorts

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

Sort a list of names.
Organize an MP3 library.
Display Google PageRank results.

List RSS feed in reverse chronological order.

Find the median.

ldentify statistical outliers.
(_

Binary search in a database.

Find duplicates in a mailing list.

Data compression.

Computer graphics.

Computational biology.

Load balancing on a parallel computer.

<«—— obvious applications

problems become easy once
items are in sorted order

<«——— non-obvious applications

48



Engineering a system sort (in 1993)

Bentley—Mcllroy quicksort.
_ _ sample 9 items
« Cutoff to insertion sort for small subarrays. /

« Pivot selection: median of 3 or Tukey’s ninther.
« Partitioning scheme: Bentley—Mcllroy 3-way partitioning.

N\

similar to Dijkstra 3-way partitioning
(but fewer exchanges when not many equal keys)

Engineering a Sort Function

JON L. BENTLEY

M. DOUGLAS McILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY

We recount the history of a new gsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

In the wild. C, C++, Java 6, ....

49



A Java mailing list post (Yaroslavskiy, September 2009)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort
Hello AlT,

I'd 1Tike to share with you new Dual-Pivot Quicksort which is faster than the
known implementations (theoretically and experimental). I'd Tike to propose
to replace the JDK's Quicksort implementation by new one.

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:

1. Pick an elements P1, P2, called pivots from the array.

2. Assume that Pl <= P2, otherwise swap it.

3. Reorder the array into three parts: those less than the smaller pivot,
those larger than the larger pivot, and in between are those elements

between (or equal to) the two pivots.
4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort 1is:

[ < P1 | PL <= & <= P2 } > P2 ]

https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

50


https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

Another Java mailing list post (Yaroslavskiy-Bloch-Bentley)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000
Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation

Changeset: b05abb410c52

Author: alanb
Date: 2009-10-29 11:18 +0000
URL: http://hg.openjdk.java.net/jdk7/t1/jdk/rev/b05abb410c52

6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation
Reviewed-by: jjb

Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com,
jbentley at avaya.com

I src/share/classes/java/util/Arrays.java
+ src/share/classes/java/util/DualPivotQuicksort. java

https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

51


https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

Dual-pivot quicksort

Use two pivots p; and p> and partition into three subarrays:
« Keys less than p.
« Keys between p; and p..
« Keys greater than p..

< D1 P1 > p; and < po P2 > D2
1 t t t
lo 1t gt hi

Recursively sort three subarrays (skip middle subarray if p1 = p»).

\

degenerates to Dijkstra’s 3-way partitioning

In the wild. Java 8, Python unstable sort, Android, ...

52



N

Quicksort quiz 6 L

Suppose you are the lead architect of a new programming language.
Which principal sorting algorithm would you use for the system sort?

Mergesort (e.g., Timsort).
Quicksort (e.g., dual-pivot quicksort).
Both A and B.

O N w »

Neither A nor B.

53



System sorts in Java 8 and Java 11

Arrays.sort() and Arrays.

parallelSort().

« Has one method for Comparable objects.

« Has an overloaded method for each primitive type.

« Has an overloaded method for use with a Comparator.

« Has overloaded methoc

Algorithms.

s for sorting subarrays.

« Timsort for reference types.

« Dual-pivot quicksort for primitive types.

Q. Why use different algorithms for primitive and reference types?

Bottom line. Use the system sort!



