
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/5/20 2:49 PM

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

see precept

https://algs4.cs.princeton.edu

Steps to developing a usable algorithm to solve a computational problem.

2

Subtext of today’s lecture (and this course)

efficient?

no

yes

model the
problem

design an
algorithm

understand
why not

solve the
problem

try again

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Disjoint sets. A collection of sets containing n elements;

each element in exactly one set.

Find. Return a “canonical” element in the set containing p ?
Union. Merge the set containing p with the set containing q.

Simplifying assumption. The n elements are named 0, 1, …, n – 1.

4

Union–find data type

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

8 elements, 3 disjoint sets

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

union(2, 5)find(1) = find(4) = find(5) = 4

Disjoint sets can represent:

・Connected components in a graph.

・Interlinked friends in a social network.

・Interconnected devices in a mobile network.

・Equivalent variable names in a Fortran program.

・Clusters of conducting sites in a composite system.

・Contiguous pixels of the same color in a digital image.

・Adjoining stones of the same color in the game of Hex.

5

Union–find data type: applications

see Assignment 1

6

Goal. Design an efficient union–find data type.

・Number of elements n can be huge.

・Number of operations m can be huge.

・Union and find operations can be intermixed.

Union–find data type: API

 public class UF

UF(int n) initialize with n singleton sets (0 to n – 1)

void union(int p, int q) merge sets containing elements p and q

int find(int p) return canonical element in set containing p

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

8

Data structure.

・Integer array id[] of length n.

・Interpretation: id[p] is canonical element in the set containing p.

Q. How to implement find(p)?

A. Easy, just return id[p].

Quick-find

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

{ 0, 5, 6 } { 1, 2, 7 } { 3, 4, 8, 9 }

id[i] = 0

3 disjoint sets

id[i] = 1 id[i] = 8

9

Data structure.

・Integer array id[] of length n.

・Interpretation: id[p] is canonical element in the set containing p.

Q. How to implement union(p, q)?

A. Change all entries whose identifier equals id[p] to id[q].

Quick-find

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

union(6, 1)

problem: many values can change

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

or vice versa

public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int n)
 {
 id = new int[n];
 for (int i = 0; i < n; i++)
 id[i] = i;
 }

 public int find(int p)
 { return id[p]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}

10

Quick-find: Java implementation

set id of each element to itself

change all entries with id[p] to id[q]

return the id of p

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

(1 array access)

(n array accesses)

(≥ n array accesses)

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Cost model. Number of array accesses (for read or write).

Union is too expensive. Processing a sequence of m union operations

on n elements takes ≥ mn array accesses.

11

Quick-find is too slow

algorithm initialize union find

quick-find n n 1

number of array accesses (ignoring leading constant)

quadratic!

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement find(p) operation?

A. Use tree root as canonical element ⇒ return root of tree containing p.

parent of 3 is 4

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

13

Quick-union

5

70 1 6

2

{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }

6 disjoint sets (6 trees)

find(i) = 9

root of 3 is 9

9

p 33

4

8
parent[]

Union–find quiz 1

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Which is not a valid way to implement union(3, 5) ?

A. Set parent[6] = 9.

B. Set parent[9] = 6.

C. Set parent[3] = parent[4] = parent[9] = 6.

D. Set parent[3] = 5.

14

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

6

52

9

4

3

parent[]

3 would no longer be in same tree as 2, 4, and 9

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement union(p, q)?

15

Quick-union

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

union(3, 5)

A. Set parent of p’s root to q’s root.

6

52

9

4

3

or vice versa

Data structure: Forest-of-trees.

・Interpretation: elements in one rooted tree correspond to one set.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement union(p, q)?

16

Quick-union

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

only one value changes

70 1 8

p

q

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

union(3, 5)

A. Set parent of p’s root to q’s root.

2

9

4

3

6

5

or vice versa

17

Quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] parent;

 public QuickUnionUF(int n)
 {
 parent = new int[n];
 for (int i = 0; i < n; i++)
 parent[i] = i;
 }

 public int find(int p)
 {
 while (p != parent[p])
 p = parent[p];
 return p;
 }

 public void union(int p, int q)
 {
 int r1 = find(p);
 int r2 = find(q);
 parent[r1] = r2;
 }
}

set parent of each element to itself
(to create forest of n singleton trees)

follow parent pointers until reach root

link root of p to root of q

18
https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Cost model. Number of array accesses (for read or write).

Running time.

・Union: takes constant time, given two roots.

・Find: takes time proportional to depth of node in tree.

19

Quick-union analysis

0

2 2 22

1 111

3 x

depth(x) = 3

x

worst-case depth = n-1

0

1

2

3

4

5

6

7

8

9

Cost model. Number of array accesses (for read or write).

Running time.

・Union: takes constant time, given two roots.

・Find: takes time proportional to depth of node in tree.

Too expensive (if trees get tall). Processing some sequences of m union

and find operations on n elements takes ≥ mn array accesses.

20

Quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

worst-case number of array accesses (ignoring leading constant)

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

When linking two trees, which strategy is most effective?

A. Link the root of the smaller tree to the root of the larger tree.

B. Link the root of the larger tree to the root of the smaller tree.

C. Flip a coin; randomly choose between A and B.

D. Doesn’t matter.

(size = 16, height = 4)

Union–find quiz 2

22

smaller tree

larger tree

(size = 6, height = 2)

・Modify quick-union to avoid tall trees.

・Keep track of size of each tree = number of elements.

・Always link root of smaller tree to root of larger tree.

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always puts the
smaller tree lower

might put the
larger tree lower

r
2

r
1

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always puts the
smaller tree lower

might put the
larger tree lower

r
2

r
1

r
2

r
1

23

Weighted quick-union (link-by-size)

reasonable alternative:
link-by-height

24

Weighted quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

parent[]

25

Data structure. Same as quick-union, but maintain extra array size[i]

to count number of elements in the tree rooted at i, initially 1.

・Find: identical to quick-union.

・Union: link root of smaller tree to root of larger tree; update size[].

Weighted quick-union: Java implementation

public void union(int p, int q)
{
 int r1 = find(p);
 int r2 = find(q);
 if (r1 == r2) return;

 if (size[r1] >= size[r2])
 { int temp = r1; r1 = r2; r2 = temp; }

 parent[r1] = r2;
 size[r2] += size[r1];

}

afterwards, r1 is root
of smaller tree

link root of smaller tree
to root of larger tree

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

26

Quick-union vs. weighted quick-union: larger example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Proposition. Depth of any node x in tree is at most log2 n.

27

Weighted quick-union analysis

 n = 10
depth(x) = 3 ≤ log2 n

0

2 2 22

1 111

depth 3 x

28

Proposition. Depth of any node x in tree is at most log2 n.

Pf.

・Depth of x does not change unless root of tree T1 containing x
is linked to root of a larger tree T2, forming new tree T3.

・In this case:

– depth of x increases by exactly 1
– size of tree containing x at least doubles

because size(T3) = size(T1) + size(T2)
 ≥ 2 𐄂 size(T1).

Weighted quick-union analysis

 T2

T1
x

can happen at most log2 n times. Why?

log2 n

1 → 2 → 4 → 8 →16 →… → n

29

Proposition. Depth of any node x in tree is at most log2 n.

Running time.

・Union: takes constant time, given two roots.

・Find: takes time proportional to depth of node in tree.

Weighted quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

weighted quick-union n log n log n log mean logarithm,
for some constant base

worst-case number of array accesses (ignoring leading constant)

Key point. Weighted quick-union makes it possible to solve problems

that could not otherwise be addressed.

Ex. [109 unions and finds with 109 elements]

・Weighted quick-union reduces run time from 30 years to 6 seconds.

・Supercomputer won’t help much; good algorithm enables solution.
30

order of growth for m ≥ n union–find operations on a set of n elements

algorithm worst-case time

quick-find m n

quick-union m n

weighted quick-union m log n

QU + path compression m log n

weighted QU + path compression m α(n)

Summary

inverse Ackermann function
(ask Tarjan!)

fastest for percolation?

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

first programming assignment

see textbook

32

Union–find applications

・Percolation.

・Terrain analysis.

・Dynamic-connectivity problem.

・Least common ancestors in trees.

・Games (Go, Hex, maze generation).

・Minimum spanning tree algorithms.

・Equivalence of finite state automata.

・Hoshen–Kopelman algorithm in physics.

・Hindley–Milner polymorphic type inference.

・Compiling equivalence statements in Fortran.

・Matlab’s bwlabel() function in image processing.

An abstract model for many physical systems:

・n-by-n grid of sites.

・Each site is open with probability p (and blocked with probability 1 – p).

・System percolates iff top and bottom are connected by open sites.

33

Percolation

does not percolatepercolates

open site connected to top

blocked
site

open
site

no open site connected to topn = 8

if and only if

An abstract model for many physical systems:

・n-by-n grid of sites.

・Each site is open with probability p (and blocked with probability 1 – p).

・System percolates iff top and bottom are connected by open sites.

34

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on grid size n and site vacancy probability p.

35

Likelihood of percolation

p low (0.4)
does not percolate

p medium (0.6)
percolates?

p high (0.8)
percolates

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

When n is large, theory guarantees a sharp threshold p*.

・p > p*: almost certainly percolates.

・p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

36

Percolation phase transition

302 Functions and Modules

% java PercPlot 20 % java PercPlot 100

Program 2.4.6 Adaptive plot client

public class PercPlot
{
 public static void curve(int N,
 double x0, double y0,
 double x1, double y1)
 { // Perform experiments and plot results.
 double gap = .005;
 double err = .05;
 int T = 10000;
 double xm = (x0 + x1)/2;
 double ym = (y0 + y1)/2;
 double fxm = Estimate.eval(N, xm, T);
 if (x1 - x0 < gap && Math.abs(ym - fxm) < err)
 {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }
 curve(N, x0, y0, xm, fxm);
 StdDraw.filledCircle(xm, fxm, .005);
 curve(N, xm, fxm, x1, y1);
 }

 public static void main(String[] args)
 { // Plot experimental curve for N-by-N percolation system.
 int N = Integer.parseInt(args[0]);
 curve(N, 0.0, 0.0, 1.0, 1.0);
 }
}

This recursive program draws a plot of the percolation probability (experimental observations)
against the site vacancy probability (control variable).

0.5930 1

1

site vacancy probability p

percolation
probability

0.5930
0

1

1

site vacancy probability p

percolation
probability

N system size

x0, y0 left endpoint

x1, y1 right endpoint

xm, ym midpoint

fxm value at midpoint

gap gap tolerance

err error tolerance

T number of trials

introJava.indb 302 3/27/09 2:10 PM

p*

n = 100

Barrier. Determining the exact threshold p* is beyond mathematical reach.

Computational approach.

・Conduct many random experiments.

・Compute statistics.

・Obtain estimate of p*.

37

Monte Carlo simulation

Casino de Monte-Carlo

・Initialize all sites in an n-by-n grid to be blocked.

・Declare random sites open until top connected to bottom.

・Vacancy percentage estimates p*.

・Repeat many times to get more accurate estimate.

38

Monte Carlo simulation

n = 20

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

p̂ =
204

400
= 0.51

39

Q. How to check whether an n-by-n system percolates?

A. Model as a dynamic-connectivity problem problem and use union–find.

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5

Q. How to check whether an n-by-n system percolates?

・Create an element for each site, named 0 to n2 – 1.

40

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

41

Q. How to check whether an n-by-n system percolates?

・Create an element for each site, named 0 to n2 – 1.

・Add edge between two adjacent sites if they both open.

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5

4 possible neighbors: left, right, top, bottom

42

Q. How to check whether an n-by-n system percolates?

・Create an element for each site, named 0 to n2 – 1.

・Add edge between two adjacent sites if they both open.

・Percolates iff any site on bottom row is connected to any site on top row.

Dynamic-connectivity solution to estimate percolation threshold

brute-force algorithm: n2 connected queries

open site

blocked site

n = 5 top row

bottom row

Clever trick. Introduce 2 virtual sites (and edges to top and bottom).

・Percolates iff virtual top site is connected to virtual bottom site.

43

Dynamic-connectivity solution to estimate percolation threshold

virtual top site

virtual bottom site

more efficient algorithm: only 1 connected query

open site

blocked site

n = 5 top row

bottom row

Q. How to model opening a new site?

44

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5

open this site

Q. How to model opening a new site?

A. Mark new site as open; add edge to any adjacent site that is open.

45

Dynamic-connectivity solution to estimate percolation threshold

open this site

open site

blocked site

n = 5

adds up to 4 edges

46

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

constant known only via simulation

Percolation threshold

302 Functions and Modules

% java PercPlot 20 % java PercPlot 100

Program 2.4.6 Adaptive plot client

public class PercPlot
{
 public static void curve(int N,
 double x0, double y0,
 double x1, double y1)
 { // Perform experiments and plot results.
 double gap = .005;
 double err = .05;
 int T = 10000;
 double xm = (x0 + x1)/2;
 double ym = (y0 + y1)/2;
 double fxm = Estimate.eval(N, xm, T);
 if (x1 - x0 < gap && Math.abs(ym - fxm) < err)
 {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }
 curve(N, x0, y0, xm, fxm);
 StdDraw.filledCircle(xm, fxm, .005);
 curve(N, xm, fxm, x1, y1);
 }

 public static void main(String[] args)
 { // Plot experimental curve for N-by-N percolation system.
 int N = Integer.parseInt(args[0]);
 curve(N, 0.0, 0.0, 1.0, 1.0);
 }
}

This recursive program draws a plot of the percolation probability (experimental observations)
against the site vacancy probability (control variable).

0.5930 1

1

site vacancy probability p

percolation
probability

0.5930
0

1

1

site vacancy probability p

percolation
probability

N system size

x0, y0 left endpoint

x1, y1 right endpoint

xm, ym midpoint

fxm value at midpoint

gap gap tolerance

err error tolerance

T number of trials

introJava.indb 302 3/27/09 2:10 PM

p*

n = 100

Steps to developing a usable algorithm.

・Model the problem.

・Find an algorithm to solve it.

・Fast enough? Fits in memory?

・If not, figure out why.

・Find a way to address the problem.

・Iterate until satisfied.

The scientific method.

Mathematical analysis.

47

Subtext of today’s lecture (and this course)

