Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

1.5 UNION-FIND

union-find data type

quick-find

quick-union

weighted quick-union

Last updated on 2/5/20 2:49 PM

Steps to developing a usable algorithm to solve a computational problem.

1.5 UNION-FIND

union-find data type

weighted quick-union

quick-find

quick-union

applications

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Union-find data type

Disjoint sets. A collection of sets containing *n* elements; each element in exactly one set.

Find. Return a "canonical" element in the set containing p? Union. Merge the set containing p with the set containing q.

Simplifying assumption. The *n* elements are named 0, 1, ..., n - 1.

Disjoint sets can represent:

- Connected components in a graph.
- Interlinked friends in a social network.
- Interconnected devices in a mobile network.
- Equivalent variable names in a Fortran program.
- Clusters of conducting sites in a composite system.
- Contiguous pixels of the same color in a digital image.
- Adjoining stones of the same color in the game of Hex.

see Assignment 1

Union-find data type: API

Goal. Design an efficient union-find data type.

- Number of elements *n* can be huge.
- Number of operations *m* can be huge.
- Union and find operations can be intermixed.

public class UF				
	UF(int n)	initialize with n singleton sets (0 to $n - 1$)		
void	union(int p, int q)	merge sets containing elements p and q		
int	find(int p)	return canonical element in set containing p		

1.5 UNION-FIND

union-find data type

weighted quick-union

quick-find

quick-union

applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

Quick-find

Data structure.

- Integer array id[] of length n.
- Interpretation: id[p] is canonical element in the set containing p.

- **Q.** How to implement find(p)?
- A. Easy, just return id[p].

Quick-find

Data structure.

- Integer array id[] of length n.
- Interpretation: id[p] is canonical element in the set containing p.

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find
quick–find	п	п	1

number of array accesses (ignoring leading constant)

quadratic!

Union is too expensive. Processing a sequence of m union operations on n elements takes $\ge mn$ array accesses.

1.5 UNION-FIND

union-find data type

weighted quick-union

quick-find

quick-union

applications

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Quick-union

Data structure: Forest-of-trees.

- Interpretation: elements in one rooted tree correspond to one set.
- Integer array parent[] of length n, where parent[i] is parent of i in tree.

- **Q**. How to implement find(p) operation?
- A. Use tree root as canonical element \Rightarrow return root of tree containing p.

Data structure: Forest-of-trees.

- Interpretation: elements in one rooted tree correspond to one set.
- Integer array parent[] of length n, where parent[i] is parent of i in tree.

Which is not a valid way to implement union(3, 5)?

- A. Set parent [6] = 9.
- **B.** Set parent [9] = 6.
- C. Set parent[3] = parent[4] = parent[9] = 6.
- **D.** Set parent[3] = 5.

Quick-union

Data structure: Forest-of-trees.

- Interpretation: elements in one rooted tree correspond to one set.
- Integer array parent[] of length n, where parent[i] is parent of i in tree.

- **Q**. How to implement union(p, q)?
- A. Set parent of p's root to q's root. ← or vice versa

Quick-union

Data structure: Forest-of-trees.

- Interpretation: elements in one rooted tree correspond to one set.
- Integer array parent[] of length n, where parent[i] is parent of i in tree.

- **Q.** How to implement union(p, q)?
- A. Set parent of p's root to q's root. ← or vice versa

Quick-union demo

Quick-union: Java implementation

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Cost model. Number of array accesses (for read or write).

Running time.

- Union: takes constant time, given two roots.
- Find: takes time proportional to depth of node in tree.

worst-case depth = n-1

depth(x) = 3

Cost model. Number of array accesses (for read or write).

Running time.

- Union: takes constant time, given two roots.
- Find: takes time proportional to depth of node in tree.

algorithm	initialize	union	find
quick-find	п	п	1
quick-union	п	п	n

worst-case number of array accesses (ignoring leading constant)

Too expensive (if trees get tall). Processing some sequences of *m* union and find operations on *n* elements takes $\ge mn$ array accesses.

1.5 UNION-FIND

union-find data type

quick-find

quick-union

applications

Algorithms

weighted quick-union

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

When linking two trees, which strategy is most effective?

- A. Link the root of the *smaller* tree to the root of the *larger* tree.
- **B.** Link the root of the *larger* tree to the root of the *smaller* tree.
- **C.** Flip a coin; randomly choose between A and B.
- D. Doesn't matter.

smaller tree (size = 6, height = 2)

Weighted quick-union (link-by-size)

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree = number of elements.
- Always link root of smaller tree to root of larger tree.

reasonable alternative:

Weighted quick-union demo

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i] to count number of elements in the tree rooted at i, initially 1.

- Find: identical to quick-union.
- Union: link root of smaller tree to root of larger tree; update size[].

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Quick-union vs. weighted quick-union: larger example

Weighted quick-union analysis

Proposition. Depth of any node *x* in tree is at most $\log_2 n$.

Proposition. Depth of any node x in tree is at most $\log_2 n$. Pf.

- Depth of x does not change unless root of tree T₁ containing x is linked to root of a larger tree T₂, forming new tree T₃.
- In this case:
 - depth of *x* increases by exactly 1
 - size of tree containing x at least doubles

```
because size(T_3) = size(T_1) + size(T_2)
```

 $\geq 2 \times \text{size}(T_1).$

Proposition. Depth of any node *x* in tree is at most $\log_2 n$.

Running time.

- Union: takes constant time, given two roots.
- Find: takes time proportional to depth of node in tree.

algorithm	initialize	union	find
quick-find	п	п	1
quick-union	п	п	п
weighted quick-union	п	$\log n$	$\log n$

worst-case number of array accesses (ignoring leading constant)

Key point. Weighted quick-union makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time	
quick–find	m n	
quick-union	m n	
weighted quick-union	$m \log n$	
QU + path compression	$m \log n \prec$	— fastest for percolation?
weighted QU + path compression	$m \alpha(n) \blacktriangleleft$	inverse Ackermann functior (ask Tarjan!)

order of growth for $m \ge n$ union-find operations on a set of n elements

Ex. [10⁹ unions and finds with 10⁹ elements]

- Weighted quick-union reduces run time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

1.5 UNION-FIND

union-find data type

weighted quick-union

Algorithms

applications

quick-find

quick-union

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- Terrain analysis.
- Dynamic-connectivity problem. see textbook
- Least common ancestors in trees.
- Games (Go, Hex, maze generation).
- Minimum spanning tree algorithms.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hindley–Milner polymorphic type inference.
- Compiling equivalence statements in Fortran.
- Matlab's bwlabel() function in image processing.

Percolation

An abstract model for many physical systems:

- *n*-by-*n* grid of sites.
- Each site is open with probability p (and blocked with probability 1 p).
- System percolates iff top and bottom are connected by open sites.

Percolation

An abstract model for many physical systems:

- *n*-by-*n* grid of sites.
- Each site is open with probability p (and blocked with probability 1 p).
- System percolates iff top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Likelihood of percolation

Depends on grid size *n* and site vacancy probability *p*.

p low (0.4) does not percolate

p medium (0.6) percolates?

p high (0.8) percolates

full open site (connected to top)

blocked site

Percolation phase transition

When *n* is large, theory guarantees a sharp threshold p^* .

- *p* > *p**: almost certainly percolates.
- *p* < *p**: almost certainly does not percolate.
- **Q.** What is the value of p^* ?

Monte Carlo simulation

Barrier. Determining the exact threshold p^* is beyond mathematical reach.

Computational approach.

- Conduct many random experiments.
- Compute statistics.
- Obtain estimate of *p**.

Casino de Monte-Carlo

Monte Carlo simulation

- Initialize all sites in an *n*-by-*n* grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates *p**.
- Repeat many times to get more accurate estimate.

full open site (connected to top)

empty open site (not connected to top)

blocked site

 $\frac{1}{2} = 0.51$

 $\hat{p} = \frac{204}{1}$

- **Q.** How to check whether an *n*-by-*n* system percolates?
- A. Model as a dynamic-connectivity problem problem and use union-find.

open site

blocked site

39

- **Q.** How to check whether an *n*-by-*n* system percolates?
 - Create an element for each site, named 0 to $n^2 1$.

open site

blocked site

40

- **Q.** How to check whether an *n*-by-*n* system percolates?
 - Create an element for each site, named 0 to $n^2 1$.
 - Add edge between two adjacent sites if they both open.

4 possible neighbors: left, right, top, bottom

- **Q.** How to check whether an *n*-by-*n* system percolates?
 - Create an element for each site, named 0 to $n^2 1$.
 - Add edge between two adjacent sites if they both open.
 - Percolates iff any site on bottom row is connected to any site on top row.

brute-force algorithm: n² connected queries

Clever trick. Introduce 2 virtual sites (and edges to top and bottom).

• Percolates iff virtual top site is connected to virtual bottom site.

more efficient algorithm: only 1 connected query

Q. How to model opening a new site?

open site

blocked site

44

- Q. How to model opening a new site?
- A. Mark new site as open; add edge to any adjacent site that is open.

```
adds up to 4 edges
```


open site

Percolation threshold

- **Q.** What is percolation threshold p^* ?
- A. About 0.592746 for large square lattices.

constant known only via simulation

Fast algorithm enables accurate answer to scientific question.

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.