1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- binary search
- memory usage
1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- memory usage

https://algs4.cs.princeton.edu
Cast of characters

Programmer needs to develop a working solution.

Client wants to solve problem efficiently.

Theoretician seeks to understand.

Student (you) might play all of these roles someday.
“As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calculation can these results be arrived at by the machine in the shortest time?” — Charles Babbage (1864)
“As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calculation can these results be arrived at by the machine in the shortest time?” — Charles Babbage (1864)

Rare book containing the world’s first computer algorithm earns $125,000 at auction

By Matt Kennedy
July 26, 2018

Ada Lovelace’s algorithm to compute Bernoulli numbers on Analytic Engine (1843)
Reasons to analyze algorithms

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

Client gets poor performance because programmer did not understand performance characteristics.
An algorithmic success story

N-body simulation.
• Simulate gravitational interactions among \(n \) bodies.
• Applications: cosmology, fluid dynamics, semiconductors, ...
• Brute force: \(n^2 \) steps.
• Barnes–Hut algorithm: \(n \log n \) steps, enables new research.

Andrew Appel
PU ’81
The challenge

Q. Will my program be able to solve a large practical input?

Our approach. Combination of experiments and mathematical modeling.
3-Sum. Given n distinct integers, how many triples sum to exactly zero?

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
% java ThreeSum 8ints.txt
4

<table>
<thead>
<tr>
<th></th>
<th>a[i]</th>
<th>a[j]</th>
<th>a[k]</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>-40</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>-20</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-40</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Context. Related to problems in computational geometry.
3-SUM: brute-force algorithm

```java
public class ThreeSum {
    public static int count(int[] a) {
        int n = a.length;
        int count = 0;
        for (int i = 0; i < n; i++)
            for (int j = i+1; j < n; j++)
                for (int k = j+1; k < n; k++)
                    if (a[i] + a[j] + a[k] == 0)
                        count++;
        return count;
    }

    public static void main(String[] args) {
        In in = new In(args[0]);
        int[] a = in.readAllInts();
        StdOut.println(count(a));
    }
}
```
1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- binary search
- memory usage
Measuring the running time

Q. How to time a program?
A. Manual.

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

528

% java ThreeSum 4Kints.txt

4039
Measuring the running time

Q. How to time a program?
A. Automatic.

```java
import edu.princeton.cs.algs4.Stopwatch;

public static void main(String[] args) {
    In in = new In(args[0]);
    int[] a = in.readInts();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a));
    double time = stopwatch.elapsedTime();
    StdOut.println("elapsed time = " + time);
}
```
Empirical analysis

Run the program for various input sizes and measure running time.
Empirical analysis

Run the program for various input sizes and measure running time.

<table>
<thead>
<tr>
<th>n</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>1,000</td>
<td>0.1</td>
</tr>
<tr>
<td>2,000</td>
<td>0.8</td>
</tr>
<tr>
<td>4,000</td>
<td>6.4</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>16,000</td>
<td>?</td>
</tr>
</tbody>
</table>

† on a 2.8GHz Intel PU-226 with 64GB DDR E3 memory and 32MB L3 cache; running Oracle Java 1.7.0_45-b18 on Springdale Linux v. 6.5
Data analysis

Standard plot. Plot running time $T(n)$ vs. input size n.

Hypothesis (power law). $T(n) = a \ n^b$.

Questions. How to validate hypothesis? How to estimate a and b?
Data analysis

Log–log plot. Plot running time $T(n)$ vs. input size n using log–log scale.

$$\log_2(T(n)) = 2.999 \log_2 n + (-33.2103)$$

$$T(n) = 2^{-33.2103} \times n^{2.999}$$

Regression. Fit straight line through data points.

Hypothesis. The running time is about $1.006 \times 10^{-10} \times n^{2.999}$ seconds.
Prediction and validation

Hypothesis. The running time is about \(1.006 \times 10^{-10} \times n^{2.999}\) seconds.

Predictions.
- 51.0 seconds for \(n = 8,000\).
- 408.1 seconds for \(n = 16,000\).

Observations.

<table>
<thead>
<tr>
<th>(n)</th>
<th>time (seconds) (^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>8,000</td>
<td>51.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>16,000</td>
<td>410.8</td>
</tr>
</tbody>
</table>

\(^\dagger\)validates hypothesis!
Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

<table>
<thead>
<tr>
<th>n</th>
<th>time (seconds) †</th>
<th>ratio</th>
<th>lg ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>1,000</td>
<td>0.1</td>
<td>6.9</td>
<td>2.8</td>
</tr>
<tr>
<td>2,000</td>
<td>0.8</td>
<td>7.7</td>
<td>2.9</td>
</tr>
<tr>
<td>4,000</td>
<td>6.4</td>
<td>8</td>
<td>3.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
<td>8</td>
<td>3.0</td>
</tr>
</tbody>
</table>

$T(n) / T(n/2) = \frac{an^b}{a(n/2)^b} = 2^b$

$\log_2 (6.4 / 0.8) = 3.0$

seems to converge to a constant $b \approx 3$

Hypothesis. Running time is about $a n^b$ with $b = \log_2$ ratio.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.
Doubling hypothesis

Doubling hypothesis. Quick way to estimate \(b \) in a power-law relationship.

Q. How to estimate \(a \) (assuming we know \(b \))?

A. Run the program (for a sufficient large value of \(n \)) and solve for \(a \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>time (seconds) (\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>8,000</td>
<td>51.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
</tbody>
</table>

\[51.1 = a \times 8000^3 \]

\[\Rightarrow a = 0.998 \times 10^{-10} \]

Hypothesis. Running time is about \(0.998 \times 10^{-10} \times n^3 \) seconds.

almost identical hypothesis to one obtained via regression (but less work)
Estimate the running time to solve a problem of size $n = 96,000$.

- **A.** 39 seconds
- **B.** 52 seconds
- **C.** 117 seconds
- **D.** 350 seconds

<table>
<thead>
<tr>
<th>n</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.02</td>
</tr>
<tr>
<td>2,000</td>
<td>0.05</td>
</tr>
<tr>
<td>4,000</td>
<td>0.20</td>
</tr>
<tr>
<td>8,000</td>
<td>0.81</td>
</tr>
<tr>
<td>16,000</td>
<td>3.25</td>
</tr>
<tr>
<td>32,000</td>
<td>13.01</td>
</tr>
</tbody>
</table>
Experimental algorithmics

System independent effects.

- Algorithm.
- Input data.

\[
\begin{align*}
\text{determines exponent } & b \\
\text{in power law } & a n^b \\
\end{align*}
\]

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

\[
\begin{align*}
\text{determines constant } & a \\
\text{in power law } & a n^b \\
\end{align*}
\]

Bad news. Sometimes difficult to get accurate measurements.
Experimental algorithmics is an example of the **scientific method**.

Context: the scientific method

Good news. Experiments are easier and cheaper than other sciences.
1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- binary search
- memory usage

https://algs4.cs.princeton.edu
Mathematical models for running time

Total running time: sum of cost \(\times \) frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

Warning. No general-purpose method (e.g., halting problem).
Q. How many operations as a function of input size n?

Example: 1-SUM

```c
int count = 0;
for (int i = 0; i < n; i++)
    if (a[i] == 0)
        count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (ns) †</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2/5</td>
<td>2</td>
</tr>
<tr>
<td>assignment statement</td>
<td>1/5</td>
<td>2</td>
</tr>
<tr>
<td>less than compare</td>
<td>1/5</td>
<td>$n + 1$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>1/10</td>
<td>n</td>
</tr>
<tr>
<td>array access</td>
<td>1/10</td>
<td>n</td>
</tr>
<tr>
<td>increment</td>
<td>1/10</td>
<td>n to $2n$</td>
</tr>
</tbody>
</table>

† representative estimates (with some poetic license)

In practice, depends on caching, bounds checking, ... (see COS 217)

Exactly n array accesses
How many array accesses as a function of n?

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

A. $\frac{1}{2} n (n - 1)$
B. $n (n - 1)$
C. $2 n^2$
D. No idea.
Example: 2-SUM

Q. How many operations as a function of input size n?

```c
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        if (a[i] + a[j] == 0)
            count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (ns)</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2/5</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>1/5</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>less than compare</td>
<td>1/5</td>
<td>$\frac{1}{2} (n + 1) (n + 2)$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>1/10</td>
<td>$\frac{1}{2} n (n - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>1/10</td>
<td>$n (n - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>1/10</td>
<td>$\frac{1}{2} n (n + 1)$ to n^2</td>
</tr>
</tbody>
</table>

$$0 + 1 + 2 + \ldots + (n - 1) = \frac{1}{2} n(n - 1) = \binom{n}{2}$$

$$1/4 n^2 + 13/20 n + 13/10 \text{ ns to } 3/10 n^2 + 3/5 n + 13/10 \text{ ns}$$

(tedious to count exactly)
Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

```c
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        if (a[i] + a[j] == 0)
            count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (ns)</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2/5</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>1/5</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>less than compare</td>
<td>1/5</td>
<td>$\frac{1}{2} (n + 1) (n + 2)$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>1/10</td>
<td>$\frac{1}{2} n (n - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>1/10</td>
<td>$n (n - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>1/10</td>
<td>$\frac{1}{2} n (n + 1)$ to n^2</td>
</tr>
</tbody>
</table>

cost model = array accesses

(we're assuming compiler/JVM does not optimize any array accesses away!)
Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.

Big Theta notation. Also discard leading coefficient.

<table>
<thead>
<tr>
<th>function</th>
<th>tilde</th>
<th>big Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4n^5 + 20n + 16$</td>
<td>$\sim 4n^5$</td>
<td>$Θ(n^5)$</td>
</tr>
<tr>
<td>$7n^2 + 100n^{4/3} + 56$</td>
<td>$\sim 7n^2$</td>
<td>$Θ(n^2)$</td>
</tr>
<tr>
<td>$\frac{1}{6}n^3 - \frac{1}{2}n^2 + \frac{1}{3}n$</td>
<td>$\sim \frac{1}{6}n^3$</td>
<td>$Θ(n^3)$</td>
</tr>
</tbody>
</table>

discard lower-order terms
(e.g., $n = 1,000$: 166.67 million vs. 166.17 million)

Rationale.

- When n is large, lower-order terms are negligible.
- When n is small, we don’t care.
Common order-of-growth classifications

<table>
<thead>
<tr>
<th>order of growth</th>
<th>name</th>
<th>typical code framework</th>
<th>description</th>
<th>example</th>
<th>(T(2n) / T(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(1))</td>
<td>constant</td>
<td>(a = b + c;)</td>
<td>statement</td>
<td>add two numbers</td>
<td>1</td>
</tr>
<tr>
<td>(\Theta(\log n))</td>
<td>logarithmic</td>
<td>while ((n > 1)) { (n = n/2; \ldots) }</td>
<td>divide in half</td>
<td>binary search</td>
<td>(\sim 1)</td>
</tr>
<tr>
<td>(\Theta(n))</td>
<td>linear</td>
<td>for ((\text{int } i = 0; i < n; i++)) { (\ldots) }</td>
<td>single loop</td>
<td>find the maximum</td>
<td>2</td>
</tr>
<tr>
<td>(\Theta(n \log n))</td>
<td>linearithmic</td>
<td>see mergesort lecture</td>
<td>divide and conquer</td>
<td>mergesort</td>
<td>(\sim 2)</td>
</tr>
<tr>
<td>(\Theta(n^2))</td>
<td>quadratic</td>
<td>for ((\text{int } i = 0; i < n; i++)) { (\ldots) }</td>
<td>double loop</td>
<td>check all pairs</td>
<td>4</td>
</tr>
<tr>
<td>(\Theta(n^3))</td>
<td>cubic</td>
<td>for ((\text{int } i = 0; i < n; i++)) { (\ldots) }</td>
<td>triple loop</td>
<td>check all triples</td>
<td>8</td>
</tr>
<tr>
<td>(\Theta(2^n))</td>
<td>exponential</td>
<td>see combinatorial search lecture</td>
<td>exhaustive search</td>
<td>check all subsets</td>
<td>(2^n)</td>
</tr>
</tbody>
</table>
Example: 2-SUM

Q. **Approximately how many array accesses** as a function of input size n?

```java
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        if (a[i] + a[j] == 0)
            count++;
```

A. $\sim n^2$ array accesses.

$0 + 1 + 2 + \cdots + (n-1) = \frac{1}{2}n(n-1)
= \binom{n}{2}$
Example: 3-SUM

Q. Approximately how many array accesses as a function of input size \(n \) ?

```java
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        for (int k = j+1; k < n; k++)
            if (a[i] + a[j] + a[k] == 0)
                count++;
```

A. \(\approx \frac{1}{2} n^3 \) array accesses.

\[
\binom{n}{3} = \frac{n(n-1)(n-2)}{3!}
\approx \frac{1}{6} n^3
\]

Bottom line. Use cost model and asymptotic notation to simplify analysis.

see COS 340
Estimating a discrete sum

Q. How to estimate a discrete sum?
A1. Take a discrete mathematics course (COS 340).
Estimating a discrete sum

Q. How to estimate a discrete sum?
A2. Replace the sum with an integral; use calculus!

Ex 1. $1 + 2 + \ldots + n.$

$$\sum_{i=1}^{n} i \sim \int_{x=1}^{n} x \, dx \sim \frac{1}{2} n^2$$

Ex 2. $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}.$

$$\sum_{i=1}^{n} \frac{1}{i} \sim \int_{x=1}^{n} \frac{1}{x} \, dx \sim \ln n$$

Ex 3. 3-sum triple loop.

$$\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=j}^{n} 1 \sim \int_{x=1}^{n} \int_{y=x}^{n} \int_{z=y}^{n} dz \, dy \, dx \sim \frac{1}{6} n^3$$

Ex 4. $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots$

$$\int_{x=0}^{\infty} \left(\frac{1}{2}\right)^x \, dx = \frac{1}{\ln 2} \approx 1.4427$$

$$\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i = 2$$
Estimating a discrete sum

Q. How to estimate a discrete sum?
A3. Use Maple or Wolfram Alpha.
How many array accesses as a function of n?

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = 1; k <= n; k = k*2)
 if (a[i] + a[j] >= a[k])
 count++;

A. $\sim n^2 \log_2 n$
B. $\sim \frac{3}{2} n^2 \log_2 n$
C. $\sim \frac{1}{2} n^3$
D. $\sim \frac{3}{2} n^3$
What is order of growth of running time as a function of n?

A. $\Theta(n)$
B. $\Theta(n \log n)$
C. $\Theta(n^2)$
D. $\Theta(2^n)$
1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- binary search
- memory usage

https://algs4.cs.princeton.edu
Binary search

Goal. Given a sorted array and a key, find index of the key in the array.

Binary search. Compare key against middle entry.
- Too small, go left.
- Too big, go right.
- Equal, found.
Binary search: implementation

Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java’s Arrays.binarySearch() discovered in 2006.

Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are Broken

Friday, June 02, 2006

Posted by Joshua Bloch, Software Engineer

I remember vividly Jon Bentley’s first Algorithms lecture at CMU, where he asked all of us incoming Ph.D. students to write a binary search, and then dissected one of our implementations in front of the class. Of course it was broken, as were most of our implementations. This made a real impression on me, as did the treatment of this material in his wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000). The key lesson was to carefully consider the invariants in your programs.

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
Binary search: Java implementation

Invariant. If key appears in array a[], then a[lo] ≤ key ≤ a[hi].

```java
public static int binarySearch(int[] a, int key) {
    int lo = 0, hi = a.length - 1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        if ((key < a[mid])) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
}
```

Why not mid = (lo + hi) / 2? One “3-way compare”
Binary search: analysis

Proposition. Binary search uses at most $1 + \log_2 n$ 3-way compares to search in a sorted array of length n.

Pf sketch.

- Each iteration of while loop:
 - performs one 3-way compare
 - decreases the length of subarray remaining by a factor of 2
- Initial array length = n.
- The while loop terminates after length = 1.
- At most $1 + \log_2 n$ iterations. Why?

\[n \rightarrow n/2 \rightarrow n/4 \rightarrow n/8 \rightarrow \ldots \rightarrow 2 \rightarrow 1 \]

1 + \log_2 n

slightly better, due to rounding and eliminating $a[mid]$ from subarray

may terminate earlier (if search key is found)
Why are sewer access covers round?

New York, New York

Okayama, Japan

Zermatt, Switzerland
3-SUM. Given an array of n distinct integers, find three such that $a + b + c = 0$.

Version 0. $\Theta(n^3)$ time.
Version 1. $\Theta(n^2 \log n)$ time.
Version 2. $\Theta(n^2)$ time.

Note. For full credit, the running time should be in the worst case and use only constant extra space.
3-Sum: an \(n^2 \log n\) algorithm

Algorithm.
- Step 1: Sort the \(n\) (distinct) numbers.
- Step 2: For each pair \(a[i]\) and \(a[j]\):
 - binary search for \(-(a[i] + a[j])\).

Analysis. Running time is \(\Theta(n^2 \log n)\).
- Step 1: \(\Theta(n^2)\) with insertion sort.
 - \([\text{or } \Theta(n \log n) \text{ with mergesort}]\)
- Step 2: \(\Theta(n^2 \log n)\) with binary search.

<table>
<thead>
<tr>
<th>input</th>
<th>30</th>
<th>-40</th>
<th>-20</th>
<th>-10</th>
<th>40</th>
<th>0</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>-40</td>
<td>-20</td>
<td>-10</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

binary search

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>((-40, -20))</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((-40, -10))</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((-40, 0))</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((-40, 5))</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((-40, 10))</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((-20, -10))</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((-10, 0))</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10, 30)</td>
<td>-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10, 40)</td>
<td>-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(30, 40)</td>
<td>-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

only count if \(a[i] < a[j] < a[k]\) to avoid double counting
1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- binary search
- memory usage
Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 2^{20} bytes.

Gigabyte (GB). 1 billion or 2^{30} bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

some JVMs “compress” ordinary object pointers to 4 bytes to avoid this cost
Typical memory usage for primitive types and arrays

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

one-dimensional array (length n)

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean[]</td>
<td>$1n + 24$</td>
</tr>
<tr>
<td>int[]</td>
<td>$4n + 24$</td>
</tr>
<tr>
<td>double[]</td>
<td>$8n + 24$</td>
</tr>
</tbody>
</table>

two-dimensional array (m-by-n)

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean[][]</td>
<td>$\sim 1 , mn$</td>
</tr>
<tr>
<td>int[][]</td>
<td>$\sim 4 , mn$</td>
</tr>
<tr>
<td>double[][]</td>
<td>$\sim 8 , mn$</td>
</tr>
</tbody>
</table>

Note: The memory usage for two-dimensional arrays is considered wasteful.
Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Memory of each object rounded up to use a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```java
public class Date {
    private int day;
    private int month;
    private int year;
    ...}  
```

- object overhead (16 bytes)
- day (4 bytes)
- month (4 bytes)
- year (4 bytes)
- padding (4 bytes)

Total: 32 bytes
Typical memory usage summary

Total memory usage for a data type value in Java:

- Primitive type: 4 bytes for `int`, 8 bytes for `double`, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

Note. Depending on application, we often count the memory for any referenced objects (recursively).

“deep memory”
How much memory does a WeightedQuickUnionUF use as a function of n?

A. $\sim 4n$ bytes
B. $\sim 8n$ bytes
C. $\sim 4n^2$ bytes
D. $\sim 8n^2$ bytes

```java
public class WeightedQuickUnionUF {
    private int[] parent;
    private int[] size;
    private int count;

    public WeightedQuickUnionUF(int n) {
        parent = new int[n];
        size = new int[n];

        count = 0;
        for (int i = 0; i < n; i++)
            parent[i] = i;
        for (int i = 0; i < n; i++)
            size[i] = 1;
    }
    ...
}
```
Turning the crank: summary

Empirical analysis.
- Execute program to perform experiments.
- Assume power law.
- Formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.
- Analyze algorithm to count frequency of operations.
- Use tilde and big-Theta notations to simplify analysis.
- Model enables us to explain behavior.

This course. Learn to use both.