
COS 226 Algorithms and Data Structures Spring 2020

Midterm Solutions

1. Initialization. Don’t forget to do this.

2. Memory.

(a) isEmpty(), addFront(), removeFront(), addBack()

To implement size(), removeBack(), and sample(), you would have to traverse the
singly linked list, from first to last. The challenge with implementing removeBack()

efficiently is updating the last pointer.

(b) ∼ 32n

Each Node object uses 32 bytes of memory and there are n nodes.

• 16 bytes of object overhead

• 8 bytes for Node reference

• 8 bytes for double item

3. Five sorting algorithms.

(3.1) insertion sort after 16 iterations

(3.2) heapsort after heap construction phase and putting 6 keys into place

(3.3) selection sort after 12 iterations

(3.4) mergesort just before the last call to merge()

(3.5) quicksort after first partitioning step

4. Analysis of algorithms.

(4.1) ∼ 2n2

Selection sort always makes ∼
1
2m

2 compares to sort an array of length m.Here m = 2n.

(4.2) ∼ n2

In each of the first n iterations (except the first), there is one compare (and no exchange).
In each of the last n iterations (except the last), there are n compares and n exchanges.

(4.3) ∼ n log2 n

Mergesort requires 1
2n log2 n compares to sort a sorted array of length n. Thus, mergesort

makes 1
2n log2 n compares to sort the left subarray (of length n) and 1

2n log2 n compares
to sort the right subarray (of length n). Finally, it makes n compares to merge the two
subarrays together.

(4.4) Timsort

Timsort is optimized for situations when an array has a small number of non-increasing
(or strictly decreasing) runs. In this case, there are only two runs (the first n elements
containing the value n, and the last n elements containing the integers 1 to n). So,
Timsort will run in linear time on staircase arrays.
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(4.5) O(n3
),O(n4

),Θ(n3
)

Big O and big Theta notations discard both lower-order terms and the leading coefficient.
The main difference is that big O notation includes functions that grow more slowly. So,
O(n4

) includes not only functions like 2n4 and 1
2n

4, but also 3n3 and 5n2.

5. Level-order traversal.

B F H J L M A

public Iterable<Key> levelOrder() {

Queue<Key> keys = new Queue<Key>();

Queue<Node> queue = new Queue<Node>();

queue.enqueue(root);

while (!queue.isEmpty()) {

Node x = queue.dequeue();

if (x != null) {

keys.enqueue(x.key);

queue.enqueue(x.left);

queue.enqueue(x.right);

}

}

return keys;

}

6. Hash tables.

(6.1) B D F

(6.2) B E

(6.3) D G

(6.4) C E
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7. Data structures.

(7.1) could not arise

The height of the tree is 4. However, the height of any weighted quick-union tree on n
elements is at most log2 n. Note that log2 10 < log2 16 = 4, so the height must be strictly
less than 4.
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(7.2) could not arise

The corresponding binary tree is not heap-ordered because 55 is greater than 66.
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(7.3) could arise

Here is the BST with the given level-order traversal.
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(7.4) could not arise

Perfect black balance is not satisfied. The path from the root to the right null link of 8
has only 2 black links (including the null link) but all other paths from the root to null
links have 3 black links.
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(7.5) could arise

It’s a valid kd-tree. It could have arisen by inserting the points in a variety of orders,
including level order: (6,7), (1,4), (8,5), (4,2), (2,8), (0,9), (3,6).

8. Problem identification.

8.1 Possible

This can be done with mergesort, as discussed in lecture.

8.2 Possible

This can be done with 3-way quicksort. The number of 3-way partitioning steps equals
the number of distinct keys. Each partitioning step makes at most n compares.

8.3 Impossible

This would violate the sorting lower bound. We could insert the n keys; then delete-max
the n keys to get them in sorted order. This would give us a compare-based sorting
algorithm that makes Θ(n log logn) compares in the worst case.

8.4 Possible

You could use binary search directly. Or you could compose an algorithm by combining
operations that we’ve seen in the course. For example, if k is not in the array, then the
predecessor is the floor (which we saw how to compute using binary search). If k is in
the array, then you could search for the first occurrence of k and return the previous key
(which you did on the Autocomplete assignment using binary search).

8.5 Impossible

This would violate the sorting lower bound. We could insert the n keys into a BST; then
we could perform an inorder traversal to get them in sorted order. Since performing an
inorder traversal doesn’t require any key compares, this would give us a compare-based
sorting algorithm that makes Θ(n) compares in the worst case.

8.6 Impossible

There may be Θ(n2
) pairs that intersect, so it will take Θ(n2

) time to collect them in a
list.
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9. Design question.

9.1 true

9.2 true

9.3 The main idea is to use binary search to find the adjacent inversion, maintaining a
subarray a[lo..hi] for which (lo, hi) is an inversion: lo < hi and a[lo] > a[hi].

• Initialize lo← p and hi← q

• Terminate the loop when hi = lo + 1, in which case (lo, hi) is an adjacent inversion.

• Otherwise,

– Set mid = (lo + hi)/2.

– If a[mid] > a[hi], then update lo←mid.
This guarantees a[lo] > a[hi].

– If a[mid] ≤ a[hi], then update hi←mid.
This guarantees a[lo] > a[hi] because a[lo] stays the same and a[hi] does not
increase.

Here’s the corresponding Java code.

int lo = p, hi = q;

while (hi > lo + 1) {

int mid = lo + (hi - lo) / 2;

if (a[mid] > a[hi]) lo = mid;

else hi = mid;

}

Here’s a symmetric version that compares a[mid] to a[lo].

int lo = p, hi = q;

while (hi > lo + 1) {

int mid = lo + (hi - lo) / 2;

if (a[lo] > a[mid]) hi = mid;

else lo = mid;

}

Here’s another version that does two compares per iteration of the while loop. The
second compare is unnecessary because, if the first compare fails, then it must be the case
that a[mid] >= a[lo] > a[hi].

int lo = p, hi = q;

while (hi > lo + 1) {

int mid = lo + (hi - lo) / 2;

if (a[lo] > a[mid]) hi = mid;

else if (a[mid] > a[hi]) lo = mid;

}


