
COS 226 Algorithms and Data Structures Fall 2019

Final

This exam has 16 questions (including question 0) worth a total of 100 points. You have 180
minutes. This exam is preprocessed by a computer when grading, so please write darkly and
write your answers inside the designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one-page cheatsheet
(8.5-by-11 paper, two sides, in your own handwriting). Electronic devices are prohibited.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. In the space provided, write your name and
NetID. Also, mark your exam room and the precept in which you are officially registered. Finally,
write and sign the Honor Code pledge. You may fill in this information now.

Name:

NetID:

Course: COS 126 COS 226

#  
Exam room: McCosh 50 Other

# #
P01 P02 P04 P05 P07 P08 P09 P10

# # # # # # # #Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature



2 PRINCETON UNIVERSITY

0. Initialization. (1 point)

In the space provided on the front of the exam, write your name and NetID; mark your exam
room and the precept in which you are officially registered; write and sign the Honor Code
pledge.

1. Empirical running time. (6 points)

Suppose that you observe the following running times (in seconds) for a program on graphs
with V vertices and E edges.

E

10,000 20,000 40,000 80,000 160,000 320,000

10,000 6.25 8.84 12.50 17.68 25.00 35.36

20,000 12.50 17.68 25.00 35.36 50.00 70.71

V 40,000 25.00 35.36 50.00 70.71 100.00 141.42

80,000 50.00 70.71 100.00 141.42 200.00 282.84

160,000 100.00 141.42 200.00 282.84 400.00 565.69

320,000 200.00 282.84 400.00 565.69 800.00 1131.37

running time of the program (in seconds)

(a) Estimate the running time of the program (in seconds) for a graph with V = 640,000
vertices and E = 640,000 edges.

seconds

(b) Estimate the order of growth of the running time of the program as a function of both
V and E.



COS 226 FINAL, FALL 2019 3

2. Memory. (4 points)

Suppose that you implement a symbol table (containing string keys and integer values) using
an r-way trie with following data type:

public class RwayTrie {

private final int r;

private Node root;

public RwayTrie(int r) {

this.r = r;

root = null;

}

private class Node {

private final int value;

private Node[] next;

private Node(int value) {

this.value = value;

this.next = new Node[r];

}

}

...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory does
each Node object use? Count all memory allocated when a Node object is constructed. Write
your answer as a function of r.

bytes



4 PRINCETON UNIVERSITY

3. String sorts. (5 points)

The column on the left contains the original input of 24 strings to be sorted; the column on
the right contains the strings in sorted order; the other 5 columns contain the contents at
some intermediate step during one of the 3 radix-sorting algorithms listed below. Match each
algorithm by writing its letter in the box under the corresponding column.

You may use each letter once, more than once, or not at all.

0 4170 1233 3963 4170 9601 1018 1018

1 9601 1866 2145 9601 5601 1233 1233

2 8287 1018 1018 5601 4514 1866 1866

3 6853 2119 2119 5052 1018 2119 2119

4 5185 2145 3923 9152 2119 2145 2145

5 5052 3923 1866 7722 7722 3923 3923

6 9152 3963 1233 6853 3923 3963 3963

7 3923 4170 4514 3923 4528 4170 4170

8 9388 4528 4170 1233 6728 4528 4435

9 1233 4514 4435 7453 1233 4514 4514

10 4528 4435 4528 3963 4435 4435 4528

11 8587 5185 7453 4514 2145 5185 5052

12 7453 5052 6728 5185 5052 5052 5185

13 6728 5601 8587 4435 9152 5601 5601

14 1866 6853 9388 2145 6853 6853 6728

15 2119 6728 9152 1866 7453 6728 6853

16 1018 7453 5052 7056 7056 7453 7056

17 4514 7056 5185 8287 3963 7056 7453

18 4435 7722 6853 8587 1866 7722 7722

19 2145 8287 8287 9388 4170 8287 8287

20 3963 8587 7056 4528 5185 8587 8587

21 7056 9601 5601 6728 8287 9601 9152

22 5601 9152 7722 1018 8587 9152 9388

23 7722 9388 9601 2119 9388 9388 9601

A E

A. Original input

B. LSD radix sort

C. MSD radix sort

D. 3-way radix quicksort (no shuffle)

E. Sorted



COS 226 FINAL, FALL 2019 5

4. Depth-first search. (6 points)

Run depth-first search on the following digraph, starting from vertex 0. Assume the adjacency
lists are in sorted order: for example, when iterating over the edges leaving vertex 3, consider
the edge 3→2 before either 3→4 or 3→8.

Final, Fall 2019

preorder:  0 5 6 1 2 7 3 4 8 9   
postorder: 2 1 4 3 9 8 7 6 5 0 

65

10

8

4

9

3

7

2

run DFS from here

(a) List the 10 vertices in preorder.

0

(b) List the 10 vertices in postorder.

0

(c) The above digraph does not have a topological order. If, however, you delete one edge,
it will have a topological order. Which edge?



6 PRINCETON UNIVERSITY

5. Breadth-first search. (7 points)

Consider the following buggy implementation of breadth-first search in a digraph.

private void bfs(Digraph G, int s) {

marked = new boolean[G.V()];

distTo = new int[G.V()];

Queue<Integer> queue = new Queue<Integer>();

queue.enqueue(s);

while (!queue.isEmpty()) {

int v = queue.dequeue();

for (int w : G.adj(v)) {

if (!marked[w]) {

distTo[w] = distTo[v] + 1;

queue.enqueue(w);

}

}

}

}

(a) Suppose that you run the code fragment on the following DAG, starting from s = 0.
Mark all statements below that are true.

Final, Fall 2019

65

10

8

4

9

3

7

2

run code 
from here

∎ It terminates.

◻ Some vertices are added to the queue more than once.

◻ At some point, the queue contains multiple copies of the same vertex.

◻ Upon termination, distTo[1] is 1 (the length of the shortest path from 0 to 1).

◻ Upon termination, distTo[9] is 9 (the length of the longest path from 0 to 9).

(b) Annotate the code above to correct it.



COS 226 FINAL, FALL 2019 7

6. Minimum spanning tree. (6 points)

Consider the following edge-weighted graph.

s

40

Final, Fall 2019

120

70

50100

90

60

10 20

110

30

Kruskal:  10 20 30 60 70 100 120

80 130

run Prim from here

(a) List the weights of the MST edges in the order that Kruskal’s algorithm adds them to
the MST.

(b) List the weights of the MST edges in the order that Prim’s algorithm adds them to the
MST. Start Prim’s algorithm from vertex s.



8 PRINCETON UNIVERSITY

7. Knuth–Morris–Pratt substring search. (6 points)

Consider the Knuth–Morris–Pratt DFA for the following string of length 8 over the alphabet
{ A, B, C }:

B B C B B B C A

(a) Complete the last three columns of this partially-completed DFA table.

0 1 2 3 4 5 6 7

A 0 0 0 0 0

B 1 2 2 4 5

C 0 0 3 0 0

(b) In which state is the DFA after consuming the following sequence of characters?
Mark the correct answer.

C B B B B C B B C C B B B C B B B C B B B C B B C B B C B B C B

0 1 2 3 4 5 6 7 8

# # # # # # # # #



COS 226 FINAL, FALL 2019 9

8. Java String library performance. (8 points)

For each of the String expressions at left, write the letter of the best-matching worst-case
running time (as a function of m and n) at right, where

• s is a string of length n

• t and regexp are strings of length m

• m ≤ n

Assume the standard (Oracle or OpenJDK) Java 8 representation and implementation for
the String data type. You may use each letter once, more than once, or not at all.

s.length() + t.length()

s.charAt(n/2)

s.substring(n/2, n)

s.equals(t)

s.indexOf(t)

s.matches(regexp)

s += t

for (int i = 0; i < s.length(); i++)

t += s.charAt(i);

A. 1

B. logm

C. logn

D. m

E. n

F. m2

G. mn

H. n2

I. 2n



10 PRINCETON UNIVERSITY

9. Burrows–Wheeler data compression. (5 points)

Consider compressing strings of length 6n that contains n copies of X X Y Y Z Z concatenated
together. For example, here is the string corresponding to n = 5.

X X Y Y Z Z X X Y Y Z Z X X Y Y Z Z X X Y Y Z Z X X Y Y Z Z

For each transformation at left, determine the compression ratio (as a function of n) and write
the letter of the best-matching term at right. As usual, assume the alphabet size R = 256.

You may use each letter once, more than once, or not at all.

Move-to-front encoding.

Burrows–Wheeler transform.

Huffman compression.

Move-to-front encoding,
followed by Huffman compression.

Burrows–Wheeler transform,
followed by move-to-front encoding,
followed by Huffman compression.

A. ∼ 1

B. ∼ 7/8

C. ∼ 1/2

D. ∼ 3/8

E. ∼ 5/24

F. ∼ 1/4

G. ∼ 3/16

H. ∼ 1/8

I. ∼ 1/16

J. ∼ 5/768

K. ∼ 1/256



COS 226 FINAL, FALL 2019 11

10. Why did we do that? (8 points)

For each pair of algorithms or data structures, identify a critical reason why we prefer the
first to the second. Write the letter of the best-matching answer.

You may use each letter once, more than once, or not at all.

Use adjacency lists instead of an adjacency-matrix
to represent a sparse undirected graph.

Use union–find instead of depth-first search for
cycle detection in Kruskal’s algorithm.

Relax the vertices in increasing order of distance
from the source in Dijkstra’s algorithm instead
of in reverse DFS postorder to compute shortest
paths in digraphs with positive edge weights.

Use 3-way radix quicksort instead of mergesort to
sort an array of strings.

Use Boyer–Moore instead of Knuth–Morris–Pratt
for substring search.

Use depth-first search instead of breadth-first
search to compute a topological order in a di-
rected acyclic graph.

Use depth-first search instead of breadth-first
search to determine all vertices reachable from a
set of vertices in NFA simulation.

Use breadth-first search instead of depth-first
search to find a shortest ancestral path in the
WordNet assignment.

A. Guarantees correctness.

B. Improves performance
in practice.

C. None of the above.



12 PRINCETON UNIVERSITY

11. Shortest paths. (7 points)

Given a digraph G with positive edge weights, complete the constructor below to compute
the length of the shortest path from s to each vertex. To do so, write the letter of one of the
following code fragments in each provided space.

A. (int i = 1; i < G.V(); i++)

B. (int i = 1; i < G.E(); i++)

C. (int v = 0; v < G.V(); v++)

D. (int v = 0; v < G.E(); v++)

E. (DirectedEdge e : G.adj(v))

F. Double.NEGATIVE_INFINITY

G. Double.POSITIVE_INFINITY

H. distTo[v] + e.weight()

I. distTo[w] + e.weight()

J. 0

K. distTo[v]

L. distTo[w]

You may use each letter once, more than once, or not at all. No other code is allowed.

public BellmanFordSP(EdgeWeightedDigraph G, int s) {

distTo = new double[G.V()];

for (int v = 0; v < G.V(); v++)

distTo[v] = _________ ;

distTo[s] = _________ ;

for _________ {

for _________ {

for _________ {

int w = e.to();

if ( _________ > _________ )

_________ = _________ ;

}

}

}

}



COS 226 FINAL, FALL 2019 13

12. Ternary search tries. (5 points)

Consider the following TST, where the integer values are shown next to the nodes of the cor-
responding string keys. Each node labeled with a ? contains some uppercase letter (possibly
different for each node).

Final, Fall 2019

U

IA

OT

NU

E

A

R

?

U

D

?

R

E

11

76

10K 3

8

5

2

G

E

R 4

no
——-
BRIE
TRUE
DARK
ERIE
DAD

yes
——-
PRO
FUN
QUEUE
HUE
DATA
TRIE
WRIE
DO

E9

1

Which of the following string keys are (or could possibly be) in the TST? Mark all that apply.

DATA BRIE DAD DARK DO FUN

∎ ◻ ◻ ◻ ◻ ◻

HUE PRO QUEUE TRIE TRUE

◻ ◻ ◻ ◻ ◻



14 PRINCETON UNIVERSITY

13. Regular expressions. (6 points)

Consider the NFA that results from applying the RE-to-NFA construction algorithm from
lecture and the textbook to the regular expression

( ( A | B C ) * B * )

The states and match transitions (solid lines) are shown below, but some of the ε-transitions
(dotted lines) are suppressed.

Final, Fall 2019

0 1 3 4 5 6 7 8 9 10

( ( C ) * B *| B )

11

A

2

((A | BC)* | B*)

0 1 3 4 5 6 7 8 9 10

( ( C ) * B *| B )

11

A

2

ε-transition

match transition

(a) Mark all edges in the ε-transition digraph.

0→1 1→2 1→3 1→4 1→7 3→4 3→5 3→6 6→7

∎ ∎ ◻ ◻ ◻ ◻ ◻ ◻ ∎

7→1 7→3 7→6 7→8 8→9 9→1 9→8 9→10 10→11

◻ ◻ ◻ ∎ ◻ ◻ ◻ ∎ ∎

(b) Suppose that you want to construct an NFA for the regular expression

( ( A | B C ) ? B * )

where the operator ? means zero or one copy of the expression that precedes it. What
minimal change(s) would you make (e.g., adding or removing ε-transitions) to the NFA
you defined in part (a)?



COS 226 FINAL, FALL 2019 15

14. Prefix-free codes. (10 points)

(a) For a final exam question, an absentminded professor created a Huffman code for a set of
7 symbols. Unfortunately, she forgot to write down the codeword for one of the symbols.

symbol codeword

A 00

B 01100

E 10

P 0111

R 01101

S ?

T 11

Deduce the codeword associated with the symbol S.

(b) Given a Huffman code (or optimal prefix-free code) for a set of n ≥ 3 symbols, with one
codeword missing, design an algorithm to deduce the missing codeword. The input to
the problem is an array of the n − 1 known codewords.

Write your answer in the spaces provided on the next page.

Your answers to (b) and (c) will be graded for correctness, efficiency, and clarity. For
full credit, your algorithm must take time linear in the input size (the total number of
bits to represent the codewords) in the worst case.



16 PRINCETON UNIVERSITY

Briefly describe your algorithm in the space below.

Draw a diagram of your data structure(s) for deducing the missing codeword when the
known codewords are 00, 01100, 10, 0111, 01101, and 11, as in part (a).



COS 226 FINAL, FALL 2019 17

(c) Now, suppose that there are two codewords missing. Design an algorithm to deduce the
two missing codewords. Do not repeat details from part (b) if they are identical.



18 PRINCETON UNIVERSITY

15. Writing seminar assignment problem. (10 points)

A prominent northeastern university assigns n students to m writing seminars. Each student
ranks the writing seminars in order of preference (from favorite to least favorite). Each writing
seminar has space for as many as p students. Design an algorithm to determine whether it is
possible to assign the students to the writing seminars so that each student gets one of their
top two choices. To do so, model the problem as a maximum flow problem.

An example. Here is an example input with n = 6 students (Abigail, Bjarne, Čazir, De-
Andre, Eun-jung, and Flor) and m = 3 writing seminars (X-Ray Crystallography, Your Life
in Numbers, and Zoom!), where each seminar has space for p = 2 students.

1st 2nd 3rd

A X Y Z

B Z X Y

C X Y Z

D Y Z X

E X Y Z

F Y X Z

In this example, there is no assignment in which each student gets their first choice (because
three students rank X as their first choice). However, there is an assignment in which each
student gets one of their top two choices:

assignment

A—X

B—Z

C—X

D—Z

E—Y

F—Y



COS 226 FINAL, FALL 2019 19

(a) Draw the flow network that you would construct in order to solve the writing seminar
assignment problem on the facing page (with 6 students and 3 writing seminars). Be
sure to label the source and destination vertices and specify the edge capacities.

(b) After solving such a maximum flow problem, how would you determine whether there
exists an assignment in which each students gets one of their top two choices?

(c) In the worst case, how many augmenting paths will the Ford–Fulkerson algorithm find
(as a function of m and n)? Assume n ≥m. Mark the best answer.

m n m + n n logn m logm mn mn2 m2n m2n2

# # # # # # # # #



20 PRINCETON UNIVERSITY

(d) Let k be an integer between 1 and m. Suppose that you want to know whether it is
possible to assign the students to writing seminars so that each students gets one of their
top k choices (instead of top 2 choices). Briefly describe how you would modify your
solution to (a).

(e) Design an efficient algorithm to find the smallest integer k for which it is possible to
assign the students to writing seminars so that each student gets one of their top k
choices. Your algorithm should be substantially faster in the worst case than repeatedly
applying (d) to solve m maximum flow problems (one for each possible value of k).


