
1

The Design of C

Princeton University
Computer Science 217: Introduction to Programming Systems

“C is quirky, flawed, and an enormous
success. While accidents of history surely
helped, it evidently satisfied a need for a
system implementation language efficient
enough to displace assembly language, yet
sufficiently abstract and fluent to describe
algorithms and interactions in a wide variety
of environments.”

– Dennis Ritchie

Goals of this Lecture
Help you learn about:

• The decisions that were made by the designers* of C
• Why they made those decisions
… and thereby…
• The fundamentals of C

Why?
• Learning the design rationale of the C language provides a richer

understanding of C itself
• A power programmer knows both the programming language

and its design rationale

* Dennis Ritchie & members of standardization committees

2

Goals of C

3

Designers wanted C to: But also:

Support system programming Support application programming

Be low-level Be portable
Be easy for people to handle Be easy for computers to handle

• Conflicting goals on multiple dimensions!
• Result: different design decisions than Java

4

Operators

Issue: What kinds of operators should C have?

Thought process
• Should handle typical operations
• Should handle bit-level programming ("bit twiddling")
• Should provide a mechanism for converting from

one type to another

5

Operators

Decisions
• Provide typical arithmetic operators: + - * / %
• Provide typical relational operators: == != < <= > >=

• Each evaluates to 0 Þ FALSE, 1 Þ TRUE
• Provide typical logical operators: ! && ||

• Each interprets 0 Þ FALSE, non-0 Þ TRUE
• Each evaluates to 0 Þ FALSE, 1 Þ TRUE

• Provide bitwise operators: ~ & | ^ >> <<
• Provide a cast operator: (type)

Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation
• Same for OR and NOT

6

Decimal Binary
2 00000000 00000000 00000000 00000010

&& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

1 00000000 00000000 00000000 00000001

Decimal Binary
2 00000000 00000000 00000000 00000010

& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

0 00000000 00000000 00000000 00000000

7

Assignment Operator
Issue: What about assignment?

Thought process
• Must have a way to assign a value to a variable
• Many high-level languages provide an assignment statement
• Would be more expressive to define an assignment operator

• Performs assignment, and then evaluates to the assigned value
• Allows assignment to appear within larger expressions

Decisions
• Provide assignment operator: =
• Define assignment operator so it changes the value of a variable,

and also evaluates to that value

8

Assignment Operator Examples
Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character (maybe).

Side effect: assign that character to i.
Evaluate to that character.
Compare that emitted value to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

9

Special-Purpose Assignment
Issue: Should C provide tailored assignment operators?

Thought process
• The construct a = b + c is flexible
• The construct i = i + c is somewhat common
• The construct i = i + 1 is very common
• Special-purpose operators make code more expressive

• Might reduce some errors
• May complicate the language and compiler

Decisions
• Introduce += operator to do things like i += c
• Extend to -= *= /= ~= &= |= ^= <<= >>=
• Special-case increment and decrement: i++ i--
• Provide both pre- and post-inc/dec: x = ++i; y = i++;

iClicker Question
Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

i = 5;
j = i++;
j += ++i;

11

sizeof Operator
Issue: How to determine the sizes of data?
Thought process

• The sizes of most primitive types are un- or under-specified
• Provide a way to find size of a given variable programmatically

Decisions
• Provide a sizeof operator

• Applied at compile-time
• Operand can be a data type
• Operand can be an expression,

from which the compiler infers a data type

Examples, on armlab using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) – where i is a variable of type int – evaluates to 4

iClicker Question
Q: What is the value of the following sizeof expression

on the armlab machines?

A. 3

B. 4

C. 8

D. 12

E. error

int i = 1;

sizeof(i + 2L)

13

Other Operators
Issue: What other operators should C have?

Decisions
• Function call operator

• Should mimic the familiar mathematical notation
• function(param1, param2, …)

• Conditional operator: ?:
• The only ternary operator: “inline if statement”
• Example: (i < j) ? i : j evaluates to min of i and j
• See King book for details

• Sequence operator (rarely used): ,
• See King book for details

• Pointer-related operators: & *
• Described later in the course

• Structure-related operators: . ->
• Described later in the course

Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill
• new create an object
• instanceof is left operand an object of class right operand?

C only
• -> structure member select
• * dereference
• & address of
• , sequence
• sizeof compile-time size of

14

Control Statements: History
What the computer does
“under the hood”:

/* add up numbers from 1 to
whatever is stored in R2 */

1.R0 = 0
2.R1 = 1
3.compare R1, R2
4.if greater goto 8
5.R0 = R0 + R1
6.R1 = R1 + 1
7.goto 3
8./* answer in R0 */

Early programming
languages (1950s)

/* add up numbers from 1 to n */

sum = 0
i = 1
LOOP:
if (i > n) goto DONE
sum = sum + i
i = i + 1
goto LOOP
DONE: /* answer in sum */

Some high-level conveniences (variable names, labels)
but control flow based on if and goto

16

Control Statements
Algol-60 language (1960)

• BEGIN-END, IF-THEN-ELSE, WHILE-DO,
FOR, (and also GOTO)

Scientific background
• Böhm and Jacopini proved (1966) that any

algorithm can be expressed as the nesting
of only 3 control structures: Corrado Böhm

statement1

statement2 statement1

condition

statement2

TRUE FALSE

statement

condition
TRUE FALSE

Sequence Selection Repetition

17

Control Statements (cont.)

Thought Process
• Dijkstra argued that any algorithm should be

expressed using only those control structures
(GOTO Statement Considered Harmful, 1968)

C language design (1972)
• Basically follow ALGOL-60, but

use { braces } instead of the
more heavyweight BEGIN – END

Edsger Dijkstra

Sequence Statement

Compound statement, alias block

18

{
statement1;
statement2;
…

}

statement1

statement2

Selection Statements

19

if (expr)
statement1;

if (expr)
statement1;

else
statement2;

statement1

condition

statement2

TRUE FALSE

if and if…else statements

Selection Statements

switch and break statements, for multi-path decisions on a
single integerExpr

20

switch (integerExpr)
{ case integerLiteral1:

…
break;

case integerLiteral2:
…
break;

…
default:

…
}

What happens
if you forget to

break?

Repetition Statements
while statement: test at leading edge

for statement: test at leading edge,
increment at trailing edge

do…while statement: test at trailing edge

21

while (expr)
statement;

for (initExpr; testExpr; incrExpr)
bodyStatement;

do
statement;

while (expr);

statement

expr
TRUE FALSE

statement

exprTRUE

FALSE

test
TRUE FALSE

body

init

incr

Other Control Statements

Issue: What other control statements should C provide?

Decisions
• break statement

• Breaks out of closest enclosing switch or repetition statement
• continue statement

• Skips remainder of current loop iteration
• Continues with next loop iteration
• When used within for, still executes incrementExpr

• goto statement grudgingly provided
• Jump to specified label

22

Declaring Variables

Issue: Should C require variable declarations?

Thought process:
• Declaring variables allows compiler to check “spelling”
• Declaring variables allows compiler to allocate memory

more efficiently
• Declaring variables produces fewer surprises about

types of variables
• (But, requires more typing; invites “do what I mean, not what I say”

complaints)

23

Declaring Variables

Decisions:
• Require variable declarations
• Provide declaration statement
• Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5; /* value of i cannot change */
• static int i; /* covered later in course */
• extern int i; /* covered later in course */

24

Declaring Variables

Decisions (cont.):
• Unlike Java, declaration statements in C90 must appear before

any other kind of statement in compound statement

25

{
int i;
/* Non-declaration

stmts that use i. */
…
int j;
/* Non-declaration

stmts that use j. */
…

}

{
int i;
int j;
/* Non-declaration

stmts that use i. */
…
/* Non-declaration

stmts that use j. */
…

}

Illegal in C Legal in C

Repetition Statements

Decisions (cont.)
• Similarly, cannot declare loop control variable in for statement

26

{
…
for (int i = 0; i < 10; i++)

/* Do something */
…

}

{
int i;
…
for (i = 0; i < 10; i++)

/* Do something */
…

}

Illegal in C

Legal in C

Statements Summary: C vs. Java

Java only
• Declarations anywhere within block
• Declare immutable variables with final
• Conditionals of type boolean
• “Labeled” break and continue
• No goto

C only
• Declarations only at beginning block
• Declare immutable variables with const
• Conditionals of any type (checked for zero / nonzero)
• No “labeled” break and continue
• goto provided (but using it in COS217 is a hanging offense)

27

iClicker Question
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

int i = 1;
switch (i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}

iClicker Question
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

int i = 1;
switch (i=i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}

I/O Facilities

Issue: Should C provide I/O facilities?
Thought process

• Unix provides the file abstraction
• A file is a sequence of characters with

an indication of the current position
• Unix provides 3 standard files

• Standard input, standard output, standard error
• C should be able to use those files, and others
• I/O facilities are complex
• C should be small/simple

30

I/O Facilities

Decisions
• Do not provide I/O facilities in the language
• Instead provide I/O facilities in standard library

• Constant: EOF
• Data type: FILE (described later in course)
• Variables: stdin, stdout, and stderr
• Functions: …

31

32

Reading Characters
Issue: What functions should C provide for reading

characters from standard input?

Thought process
• Need function to read a single character from stdin
• Function must have a way to indicate failure, that is, to indicate that

no characters remain

Decisions
• Provide getchar() function
• Make return type of getchar() wider than char

• Make it int; that's the natural word size
• Define getchar() to return EOF (a special non-character int)

to indicate failure

Reminder: there is no such thing as "the EOF character"

33

Writing Characters
Issue: What functions should C provide for writing a

character to standard output?

Thought process
• Need function to write a single character to stdout

Decisions
• Provide a putchar() function
• Define putchar() to accept one parameter

• For symmetry with getchar(), parameter is an int

34

Reading Other Data Types
Issue: What functions should C provide for reading

data of other primitive types?

Thought process
• Must convert external form (sequence of character codes) to

internal form
• Could provide getshort(), getint(), getfloat(), etc.
• Could provide one parameterized function to read any

primitive type of data

Decisions
• Provide scanf() function
• Can read any primitive type of data
• First parameter is a format string containing conversion specs

See King book for details

35

Writing Other Data Types
Issue: What functions should C provide for writing data

of other primitive types?

Thought process
• Must convert internal form to external form (sequence of

character codes)
• Could provide putshort(), putint(), putfloat(), etc.
• Could provide one parameterized function to write any

primitive type of data

Decisions
• Provide printf() function
• Can write any primitive type of data
• First parameter is a format string containing conversion specs

See King book for details

36

Other I/O Facilities
Issue: What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course
after covering files, arrays, and strings

Summary

C design decisions and the goals that affected them
• Data types (last time)
• Operators
• Statements
• I/O facilities

Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

37

38

Appendix: The Cast Operator
Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f

39

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d

40

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c

41

Appendix: The Cast Operator

(4) Cast between integer types of same size:
• Compiler generates no code
• Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u

