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Circuit and Communication Complexity

Ran Raz

LECTURE 6

Communication complexity and circuit depth

There is an interesting connection between communication complexity and the
depth of Boolean circuits. In the next lectures, we will explore this connection and
we will use it to prove lower bounds for the depth of monotone Boolean circuits.
In particular, we will prove a lower bound of Ω(log2 n) for the monotone depth
of directed st-Connectivity and a lower bound of Ω(n) for the monotone depth of
Matching.

6.1. Karchmer - Wigderson Games

For any function f : {0, 1}n → {0, 1}, we define a corresponding communication
game Gf . The game Gf is referred to as, the KW game corresponding to the
function f .

Definition 1. (KW Game, Gf ): Given f : {0, 1}n → {0, 1}, define the communi-
cation game Gf as follows:

• Player 1 gets x ∈ {0, 1}n, s.t., f(x) = 1.
• Player 2 gets y ∈ {0, 1}n, s.t., f(y) = 0.

The goal is to find a coordinate i, s.t., xi 6= yi.

Since x 6= y, there is at least one coordinate i, such that, xi 6= yi. That is,
there is at least one right answer for the game Gf on input (x, y). Note however,
that in many cases there is more than one such coordinate i. Thus, the game Gf is
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2 R. RAZ, CIRCUIT AND COMMUNICATION COMPLEXITY

a relation, rather than a function. That is, for an input (x, y) there may be more
than one right answer. This is different than communication problems that were
discussed in previous lectures. Nevertheless, we can still define the communication
complexity of the game as before. We denote the deterministic communication
complexity of a game G by CC(G).

Why is the game Gf interesting ? It turns out that the deterministic com-
munication complexity of the game Gf is exactly equal to the circuit depth of the
function f (i.e., the minimal depth of a Boolean circuit that computes f). For a
Boolean circuit C, denote its depth by Depth(C). For a function f , denote its
circuit depth by Depth(f).

Lemma 6.1.1. For every f : {0, 1}n → {0, 1},

CC(Gf ) = Depth(f).

Proof. We will first show that CC(Gf ) ≤ Depth(f). Given a Boolean circuit C
that computes f , we will construct a communication protocol for the game Gf , with
communication complexity Depth(C). The proof is by induction on Depth(C).

Base case: Depth(C) = 0. In this case, f(z) is simply the function zi or ¬zi,
for some i. Therefore, there is no need for communication, since i is a coordinate
in which x and y always differ. That is, the two players can give the answer i, for
any input pair (x, y). This is a protocol for Gf , with communication complexity 0.

Induction step: Consider the top gate of C. Assume first that C = C1 ∧ C2.
Then,

Depth(C1), Depth(C2) ≤ Depth(C) − 1.

Denote by f1 and f2 the functions computed by C1 and C2 respectively. By the
inductive hypothesis,

CC(Gf1
), CC(Gf2

) ≤ Depth(C) − 1.

We know that f(x) = 1 and f(y) = 0. Therefore,

f1(x) = f2(x) = 1
f1(y) = 0 or f2(y) = 0

Let us describe the protocol for Gf . In the first step of the protocol, Player 2 sends
a value in {1, 2}, indicating which of the functions f1 or f2 is zero on y. Assume
that Player 2 sends 1. In this case, both players know:

f1(y) = 0
f1(x) = 1

Hence, to solve the game Gf , the players can apply a protocol for Gf1
. By the

inductive hypothesis, there is such a protocol with communication complexity
CC(Gf1

) ≤ Depth(C)− 1. In the same way, if Player 2 sends 2 the players can use
the protocol for Gf2

. The players used only one additional bit of communication.
Hence, we can conclude that

CC(Gf ) ≤ 1 + max{CC(Gf1
), CC(Gf2

)}
≤ 1 + (Depth(C) − 1) ≤ Depth(f).

We assumed that C = C1∧C2. The other case, C = C1∨C2, is proved in the same
way, except that Player 1 is the one who sends the first bit (indicating whether
f1(x) = 1 or f2(x) = 1).
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We will now show that CC(Gf ) ≥ Depth(f). To prove this, we define a more
general communication game. For any two disjoint sets: A, B ⊆ {0, 1}n, denote by
GA,B the following game:

• Player 1 gets x ∈ A.
• Player 2 gets y ∈ B.
• The goal is to find a coordinate i, s.t., xi 6= yi.

Note that Gf is the same as Gf−1(1),f−1(0). We will prove the following claim:

Claim 6.1.2. If CC(GA,B) = d then there is a function f : {0, 1}n → {0, 1}, such
that:

• f(x) = 1, for every x ∈ A.
• f(y) = 0, for every y ∈ B.
• Depth(f) ≤ d.

That is, the function f separates A from B, and Depth(f) ≤ d. Note that for
the game Gf = Gf−1(1),f−1(0), a function that separates A from B must be the
function f itself. Hence, we obtain that Depth(f) ≤ CC(Gf ), as required. Let us
give the proof of the claim.

Proof. (claim) The proof is by induction on d = CC(GA,B).
Base case: d = 0. That is, the two players know the answer without any

communication. Hence, there is a coordinate i, such that, for every x ∈ A and
every y ∈ B, we have xi 6= yi. Thus, the function f(z) = zi or the function
f(z) = ¬zi satisfies the requirements of the claim (depending on whether for every
x ∈ A we have xi = 1, or, for every x ∈ A we have xi = 0).

Induction step: We have a protocol of communication complexity d for the
game GA,B. Assume first that Player 1 sends the first bit in the protocol. This bit
partitions the set A into two disjoint sets A = A0 ∪A1. If the first bit is 0, the rest
of the protocol is a protocol for the game GA0,B. If the first bit is 1, the rest of
the protocol is a protocol for the game GA1,B. Hence, for both games, GA0,B and
GA1,B, we have protocols with communication complexity at most d − 1. By the
inductive hypothesis, we have two functions f0 and f1 that satisfy:

• f0(x) = 1, for every x ∈ A0.
• f1(x) = 1, for every x ∈ A1.
• f0(y) = f1(y) = 0, for every y ∈ B.
• Depth(f0), Depth(f1) ≤ d − 1.

We define f = f0 ∨ f1. Then:

• For every x ∈ A, we have f(x) = f0(x) ∨ f1(x) = 1.
• For every y ∈ B, we have f(y) = f0(y) ∨ f1(y) = 0
• Depth(f) = 1 + max{Depth(f0), Depth(f1)} ≤ d

That is, f satisfies the requirements.
If Player 2 sends the first bit, B is partitioned into two disjoint sets, B =

B0 ∪ B1, and as before, the rest of the protocol is a protocol for the games GA,B0

and GA,B1
, (depending on the bit sent). By the inductive hypothesis, we have two

functions, g0, g1, corresponding to the two games, GA,B0
and GA,B1

, such that,

• g0(x) = g1(x) = 1, for every x ∈ A.
• g0(y) = 0, for every y ∈ B0.
• g1(y) = 0, for every y ∈ B1.
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We define g = g0 ∧ g1. Then:

• For every x ∈ A, we have g(x) = g0(x) ∧ g1(x) = 1.
• For every y ∈ B, we have g(y) = g0(y) ∧ g1(y) = 0.
• Depth(g) = 1 + max{Depth(g0), Depth(g1)} ≤ d.

Consider for example the following game. Player 1 gets a graph x (on n vertices)
that contains a clique of size n/2. Player 2 gets a graph y (on n vertices) that doesn’t
contain a clique of size n/2. The goal of the two players is to find an edge in x that
doesn’t exist in y or an edge in y that doesn’t exist in x. Lemma 6.1.1 shows that
the communication complexity of this game is exactly equal to the circuit depth
of the (n/2)-Clique function. In particular, one can try to prove a lower bound
for the circuit depth of the (n/2)-Clique function, by proving a lower bound for
the communication game. Note that no lower bound better than Ω(log n) was ever
proved for the circuit depth of an explicit Boolean function. KW games give a
direction to try to prove such lower bounds.

6.2. Monotone Complexity

A monotone Boolean function is defined in the following way.

Definition 2. (Monotone Function): f : {0, 1}n → {0, 1} is a monotone function
if for every x, y ∈ {0, 1}n, x ≥ y implies f(x) ≥ f(y), where the partial order ≥
on {0, 1}n is the Hamming order, that is, (x1, . . . , xn) ≥ (y1, . . . , yn) iff for every
1 ≤ i ≤ n we have xi ≥ yi.

We think of the Hamming partial order also as the containment order between
sets, where a vector x ∈ {0, 1}n corresponds to the set Sx = {i | xi = 1}. Obviously,
x ≤ y iff Sx ⊆ Sy.

Many well studied functions on graphs (e.g., k-Clique, Perfect-Matching, st-
Connectivity, etc.) are monotone functions. One example is the k-Clique function,

CLIQUEn,k : {0, 1}(
n
2) → {0, 1}.

The domain of CLIQUEn,k is the set of all graphs on the n vertices {1, . . . n}. A
graph is represented by an assignments to the

(

n
2

)

variables xi,j , where for every
pair i, j ∈ {1, . . . n}, xi,j = 1 iff (i, j) is an edge in the graph. CLIQUEn,k gets the
value 1 on a graph iff the graph contains a clique of size k.

Another example that will be analyzed in the next lectures is the directed
st-Connectivity function.

Definition 3. (Directed st-Connectivity): Given a directed graph G on n + 2
vertices, two of which are marked as s and t, st-Connectivity(G) = 1 iff there is a
directed path from s to t in G.

Obviously, st-Connectivity is a monotone function, since if we add edges we
cannot disconnect an existing path from s to t.

Every monotone function can be characterized by the set of its minterms and
by the set of its maxterms.
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Definition 4. (Minterm, Maxterm): Let f : {0, 1}n → {0, 1} be a monotone
function.

• A minterm of f is x ∈ {0, 1}n, s.t., f(x) = 1 and for every x′ < x,
f(x′) = 0.

• A maxterm of f is y ∈ {0, 1}n, s.t., f(y) = 0 and for every y′ > y,
f(y′) = 1.

For example, for st-Connectivity: A minterm is a graph that contains one

s

t t

s

maxterm minterm

Figure 1. A maxterm and a minterm of st-Connectivity

simple directed path from s to t (i.e., a path from s to t that does not intersect
itself), and no other edges.

• If a graph G is a minterm then it must contain a simple path P from s
to t. G cannot contain any other edges, because then P < G (in the edge
containment order), in contradiction to the fact that G is a minterm.

• Every simple path from s to t is a minterm, because every edge that we
drop from it disconnects s from t.

A maxterm for st-Connectivity is a graph G, such that, the set of vertices can be
partitioned into two disjoint sets S and T , such that,

• s ∈ S and t ∈ T .
• G contains all possible directed edges, except those from S to T .

This is indeed the set of maxterms for st-Connectivity, because

• If G is a maxterm then let S be the set of vertices that are reachable from
s in G, and let T be the set of all other vertices. t ∈ T , because one
cannot reach t from s in G, since st-Connectivity(G) = 0. G contains all
edges except those from S to T , otherwise we can add the missing edges
and still leave t unreachable from s. There are no edges from S to T by
the definition of S (recall that S is the set of vertices reachable from s).

• If G satisfies both criteria, then every path starting from s in G will remain
in S and therefore will not reach t. Thus, st-Connectivity(G) = 0. Every
edge we add to G will connect S to T , and since S and T are strongly
connected it will create a path from s to t.

We think of a maxterm of st-Connectivity as a partition of the set of vertices
into two sets (S and T ) or as a two coloring of the vertices by the colors 0 and 1
(where S is colored by 0 and T is colored by 1).

Monotone Boolean circuits are defined in the same way as Boolean circuits,
except that we do not allow to use NOT gates. Intuitively, monotone circuits
cannot compute all functions, because there is no way to simulate a NOT gate
using AND and OR gates. Nevertheless, it is not hard to see that monotone
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circuits can compute all monotone functions. This can be done, e.g., by taking the
disjunction (of clauses that correspond to) all the minterms or the conjunction of
(clauses that correspond to) all the maxterms.

Proposition 6.2.1. A function f : {0, 1}n → {0, 1} is monotone iff it can be
computed by a monotone circuit.

The monotone circuit size and the monotone circuit depth of a monotone
Boolean function are defined in a similar way to the definitions of the circuit size
and the circuit depth of a Boolean function.

Definition 5. (Mon-Size, Mon-Depth): For a monotone function f : {0, 1}n →
{0, 1}, define:

(1) Mon-Size(f)
def
= The minimal size of a monotone circuit for f .

(2) Mon-Depth(f)
def
= The minimal depth of a monotone circuit for f .

Obviously, for every monotone function f ,

• Mon-Size(f) ≥ Size(f).
• Mon-Depth(f) ≥ Depth(f).

There are functions for which these inequalities are strict.
Unlike for general Boolean circuits, several (famous) lower bounds were proved

for the monotone size and for the monotone depth of certain functions. In partic-
ular, it was proved by Razborov that mon-P 6= mon-NP and by Karchmer and
Wigderson that mon-NC1 6= mon-NC2. For the k-Clique function, for example, it
is known that (for certain values of k, depending on n):

Mon-Size(CLIQUEn,k) = Ω(2n1/3/ log n).
Mon-Depth(CLIQUEn,k) = Ω(n).

Recall that for the non-monotone case, there are no non-trivial lower bounds. In
particular, there is no lower bound better than linear for the circuit size of any
explicit function, and there is no lower bound better than logarithmic for the circuit
depth of any explicit function.

In these lectures, we will prove several lower bounds for the depth of monotone
circuits. In particular, we will prove an Ω(n) lower bound for the monotone depth
of the Matching function, and an Ω(log2 n) lower bound for the monotone depth of
directed st-Connectivity. To prove these bounds, we will use the monotone version
of KW games.

6.3. Monotone Karchmer-Wigderson Games

For any monotone function f : {0, 1}n → {0, 1}, we define a corresponding com-
munication game Mf . The game Mf is referred to as, the monotone KW game
corresponding to the function f .

Definition 6. (Monotone KW Game, Mf ): Given a monotone function f : {0, 1}n →
{0, 1}, define the communication game Mf as follows.

• Player 1 gets x ∈ {0, 1}n, s.t., f(x) = 1.
• Player 2 gets y ∈ {0, 1}n, s.t., f(y) = 0.

The goal is to find a coordinate i, s.t., xi > yi, i.e., xi = 1 and yi = 0.
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The game is similar to the game Gf , except that f is monotone, and that the
goal is more specific. The goal in Mf is to a find a coordinate i, such that, xi > yi,
rather than xi 6= yi in the game Gf . Note that the goal is always achievable.
Otherwise, for every i we have yi ≥ xi, and hence y ≥ x, in contradiction to the
fact that f is monotone and f(x) = 1, f(y) = 0.

The deterministic communication complexity of the game Mf is exactly equal
to the monotone circuit depth of the function f .

Lemma 6.3.1. For every monotone f : {0, 1}n → {0, 1},

CC(Mf ) = Mon-Depth(f).

Proof. The proof is similar to the proof for the non-monotone case, with the
following minor modifications.

When constructing the protocol from a given circuit:
Base case: since f is monotone, if the depth is 0, we have that f(z) = zi and

therefore it must be the case that xi = 1 and yi = 0. Hence, xi > yi, and as before,
there is no need for communication, as the answer is always i.

Induction step: In the induction step, the top gate separates our circuit into
two sub-circuits. The protocol then uses one communication bit to decide which
of the two games (corresponding to the two sub-circuits) to solve. Since the sub-
circuits are monotone, by the inductive hypothesis they each have a protocol that
solves their corresponding monotone game. This solves the monotone game corre-
sponding to the original circuit, since the sub-games are monotone, and therefore
the coordinate i that is found satisfies xi > yi.

When constructing the circuit from a given protocol:
Base case: if there is no communication, both players already know a coordi-

nate i, such that, xi > yi. Hence, our circuit is simply f(z) = zi.
Induction step: Each communication bit splits our game into two sub-games

of smaller communication complexity. Note that if the original game was a mono-
tone game (i.e., if the goal is to find i, s.t., xi > yi), so are the two sub-games. By
the inductive hypothesis, the circuits for these games are monotone. Since we only
added either an AND gate or an OR gate, the entire circuit constructed is also
monotone.

Consider for example the following game. Player 1 gets a graph x (on n vertices)
that contains a clique of size n/2. Player 2 gets a graph y (on n vertices) that doesn’t
contain a clique of size n/2. The goal of the two players is to find an edge in x that
doesn’t exist in y. Lemma 6.3.1 shows that the communication complexity of this
game is exactly equal to the monotone circuit depth of the (n/2)-clique function.
Using this connection, a lower bound of Ω(n) was proved for the monotone depth
of the (n/2)-Clique function.

We will now define the communication game M̂f . The game M̂f is equivalent
to Mf and will usually be more convenient to work with.

Definition 7. (Monotone KW Game, M̂f ): Given a monotone function f :

{0, 1}n → {0, 1}, define the communication game M̂f as follows:

• Player 1 gets x ∈ {0, 1}n, s.t., x is a minterm of f (hence, f(x) = 1).
• Player 2 gets y ∈ {0, 1}n, s.t., y is a maxterm of f (hence, f(y) = 0).
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The goal is to find a coordinate i, s.t., xi > yi, i.e., xi = 1 and yi = 0.

Note that the game M̂f is a restriction of the game Mf to a subset of inputs.

Hence, any protocol for Mf is also a protocol for M̂f . Therefore,

CC(M̂f ) ≤ CC(Mf ).

Actually, the communication complexity of the two games is exactly the same.

Proposition 6.3.2. For every monotone f : {0, 1}n → {0, 1},

CC(M̂f ) = CC(Mf ).

Proof. We have to prove that CC(M̂f ) ≥ CC(Mf ). Given a protocol for M̂f , we
will construct a protocol for Mf (with the same communication complexity).

Let x, y be inputs for the game Mf . Player 1 gets x, s.t., f(x) = 1 , and finds
a minimal x′, s.t., x′ ≤ x and f(x′) = 1. This is done by successively changing
coordinates in x from 1 to 0, while checking that f(x′) is still 1. Eventually, Player 1
has a minterm x′ ≤ x. In the same way, Player 2 finds a maxterm y′ ≥ y. The
players apply the protocol for M̂f on the input (x′, y′). Since x′ is a minterm, and
y′ is a maxterm, the protocol outputs a coordinate i, such that, x′

i = 1 and y′

i = 0.
Since x′ ≤ x and y′ ≥ y, we have xi = 1 and yi = 0.

As a corollary, we obtain,

Lemma 6.3.3. For any monotone function f : {0, 1}n → {0, 1},

Mon-Depth(f) = CC(M̂f ).

Consider for example the following game. Player 1 gets a directed path x (on
n + 2 vertices) that starts from a vertex s and ends at a vertex t. Player 2 gets
a coloring of the n + 2 vertices by the colors 0, 1, such that, s is colored 0 and t
is colored 1. The goal of the two players is to find an edge (u, v) in x, such that,
u is colored 0 and v is colored 1. Lemma 6.3.3 shows that the communication
complexity of this game is exactly equal to the monotone circuit depth of directed
st-Connectivity. A simple protocol for this game is the following: In the first
round, Player 1 sends the name (i.e., number) of the middle vertex in the path x,
and Player 2 replies with its color (according to the coloring y). If the color of
the middle vertex is 0 then the players continue with the second half of the path,
and if the color is 1 then the players continue with the first half of the path. The
players continue to perform a binary search, until they are left with a path of length
1. This path will be an edge (u, v), such that, u is colored 0 and v is colored 1.
In each round of the protocol, the players communicate O(log n) bits (the name
of the vertex and its color). Since in each step the path is shorten by half, the
number of rounds will be O(log n). Altogether, the communication complexity of

the protocol is O(log2 n). Hence, by Lemma 6.3.3, the monotone circuit depth of

directed st-Connectivity is O(log2 n). In the next lectures, we will show that this
upper bound is tight. That is, we will prove a lower bound of Ω(log2 n) for the
communication complexity of the game, and hence also for the monotone circuit
depth of directed st-Connectivity. This shows that mon-NC1 6= mon-NC2.
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6.4. Lower Bound for Matching

We will now prove a lower bound of Ω(n) for the monotone depth of the Matching
function. For simplicity, we define the function Match as follows. Let n = 3k. The
function Match inputs a graph on n vertices and outputs 1 if the graph contains k
independent edges (i.e., a k-matching), and outputs 0 otherwise.

Denote the corresponding monotone KW game by M0. The game M0 is the
following. Player 1 gets a graph x (on n vertices) that contains a k-matching.
Player 2 gets a graph y (on n vertices) that doesn’t contain a k-matching. The goal
of the two players is to find an edge in x that doesn’t exist in y. By Lemma 6.3.1,

CC(M0) = Mon-Depth(Match).

Hence, in order to prove a lower bound for Mon-Depth(Match), it is enough to
prove a lower bound for CC(M0).

Consider the following game, denoted by M1. Player 1 gets a k-matching x (on
n vertices), that is, k independent edges. Player 2 gets a set y of k − 1 vertices.
The goal is to find an edge in x that does not touch any of the vertices in y.

Claim 6.4.1.

CC(M1) ≤ CC(M0).

Proof. Note that every k-matching x is a minterm of the function Match. Every
set y of k − 1 vertices can be viewed as a maxterm of the function Match, by
considering all the edges that touch y. Hence, any protocol P for M0 can be
applied on (x, y) to get an edge in x that doesn’t touch y. That is, any protocol P
for M0 can be applied also as a protocol for M1.

Thus,
CC(M1) ≤ Mon-Depth(Match).

Hence, to prove a lower bound for Mon-Depth(Match), it is enough to prove a
lower bound for CC(M1). Let P be a protocol for M1. Observe that we can assume
that P outputs each possible right answer with the exact same probability (i.e.,
if for the input (x, y) there are several right answers then the protocol outputs
each one of them with the same probability). This can be assumed, since (using
the common random string) the players can randomly permute the vertices before
applying the protocol P .

Consider now the following game, denoted by M2. Player 1 gets a k-matching
x. Player 2 gets a set y of k vertices. The goal of the two players is to output 1 if
there is an edge in x that does not touch any of the vertices in y, and output 0 if
every edge in x touches a vertex in y.

Claim 6.4.2. For any constant ǫ > 0, there exists a constant a, such that,

CCǫ(M2) ≤ a · CC(M1).

Proof. Assume that we have a deterministic protocol P1 for M1. We will construct
a probabilistic protocol P2 for M2 (with the same communication complexity as P1).
Let x, y be inputs for the game M2. Player 2 has a set y of k vertices, and will
randomly choose a vertex v ∈ y and remove it. Now, Player 2 is left with a set y′

of k − 1 vertices. The two players can now apply the protocol P1 (for M1) on the
input (x, y′) and obtain (as an output) an edge e ∈ x that doesn’t touch any of the
vertices in y′. If the edge e does not touch v then the protocol P2 (for M2) outputs
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1 (as e is an edge that doesn’t touch any vertex in y). If e touches v the protocol
P2 outputs 0 (i.e., P2 assumes that there is no edge in x that doesn’t touch y, as
such an edge was not found by P1).

The analysis of the protocol P2 is simple. If P2 outputs 1 then there can be no
mistake (e does not touch neither v nor any of the other vertices in y, as assured
by the protocol P1). On the other hand, if the protocol outputs 0 then a mistake is
possible. It may be that there is an edge e′ in x that doesn’t touch any of the vertices
in y, but still the protocol P1 outputs the edge e that does touch v. However, since
the edges are independent, there is at most one edge e that touches v, and we are
analyzing the case where there is at least one edge e′ ∈ x that doesn’t touch any of
the vertices in y. As mentioned above, we can assume that the protocol P1 outputs
each possible right answer with the exact same probability. An error occurs if e
was output (and not any of the edges e′). Hence, the probability of error is at most
1/2 (it may be smaller if there are several edges e′ that do not touch any vertex in
y).

To reduce the probability of error to any constant ǫ, one can repeat the protocol
a constant number of times.

Thus,
Ω(CCǫ(M2)) ≤ Mon-Depth(Match).

We will prove that
CCǫ(M2) = Ω(n),

by a reduction from the 3-Distinctness problem.
Recall that in the 3-Distinctness problem the inputs are x, y ∈ {a, b, c}n. To

convert their input to an input for M2, the players construct the following graph.
For each coordinate construct an independent triangle, and denote the triangle
vertices by a, b, c. Denote each edge of a triangle by the same letter as the vertex
that it does not touch (see Figure 2). The players convert their inputs to inputs for

a

b ca

bc

a

b ca

bc

a

b ca

bc. . .
Figure 2. Reducing 3- Distinctness to M2

M2 in the following way: Player 1 interprets his n coordinates as the corresponding
n edges in the n triangles (one edge for each coordinate). That is, each xi is
interpreted as the corresponding edge in the ith triangle. Denote the set of these
edges by x̂. Player 2 interprets his n coordinates as the corresponding n vertices in
the n triangles. That is, each yi is interpreted as the corresponding vertex in the
ith triangle. Denote the set of these vertices by ŷ. Obviously, there is an edge in x̂
that doesn’t touch ŷ iff there is a coordinate i, such that, xi = yi.

Recall that we have a lower bound of Ω(n) for the probabilistic communication
complexity of the 3-Distinctness problem. Hence, we obtain a lower bound of Ω(n)
for the probabilistic communication complexity of M2. Hence,

Mon-Depth(Match) = Ω(n).


