Reading and presenting papers

COS 518 Advanced Computer Systems

How to critically read a paper (1/2)

- Read once for perspective, twice for details
 - Large systems have many "moving parts" (Lect. 1)
 - Analogous to "build one to throw one away", you may need to revisit the paper in order to know which design details to focus on
- Take notes as you read
 - Question assumptions, importance of problem, important effects not mentioned by authors
 - Write questions to track what you don't understand

How to critically read a paper (2/2)

- Don't pass by ideas/design details until you understand
 - May need to re-read a paragraph, many times, or even discuss with peers
 - You can't fully understand if the design is good unless you understand all the details: be vigilant!
- Don't presume authors' assumptions or design choices correct simply because paper was published!

How to evaluate a research paper?

- Important, relevant problem? Clever idea? These are orthogonal!
- Reasonable assumptions and models?
- Longer ago published, more you can judge impact:
 - Does everyone now use systems derived from it?
 - Has the idea shown up in many different contexts?
- Recent papers: more on cleverness, promise
- · Other contributions possible
 - Thorough investigation of complex phenomenon
 - Comparison that brings sense to an area

Presentation guidelines

- Slides for a talk 10 12 minutes in length
- · Come prepared to lead class discussion after talk

5

Content of a presentation

- Motivation and problem statement
- · State main contributions of work (core ideas)
- · Description of central design
- · Experimental evaluation
- Related work
- Future work
- · "Opinion part"

Description of central design

- You won't have time/space to discuss every detail, so present those that are most important...
 - To understanding how and why system, design, or algorithm works
 - To understanding results in experimental evaluation
- · Clarity is very important here
 - Usually describe in a "top-down" fashion
 - Start with the overall problem
 - Identify parts of the solution, then identifying the sub-parts of those parts, etc.

Experimental evaluation

- What questions do the authors ask in their evaluation?
- What is authors' hypothesis for each question and why?
- Won't have time to present all results, so present most important results
- For any graph you show or refer to:
 - First, explain the axes
 - Explain overall trend: why system behaves as it does
 - Justify explanation by referring to relevant details of the system's design and experiment's design
 - Does anything in graph seem anomalous? Try to explain

Related and future work

- What are the **most closely related** other systems/results?
 - How are they **similar**? How are they **different**?
 - Is the difference between the work you are presenting and the related work significant?
- · Should read citations enough to understand differences
- Should search for related work published after/with the paper
- No need to claim the work you are presenting is "better" or "worse" than a particular piece of related work
 - Often it is simply that the two pieces of work are different
- But, should articulate the precise difference (e.g., "this work solves a slightly different problem...")

"Opinion part"

- Offer your final critical assessment:
 - What are the strengths of the work?
 - What are the weaknesses/limitations?
 - What important questions are left unanswered?

Advice on giving a good talk

- Rehearse your talk several times
 - Pay attention to length
- Help one another present clearly
- Use examples to explain difficult ideas
 - Animations and pictures help tremendously
 - There is utility in **creating your own**
- Be constructively critical throughout