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1 Last Lecture Review

We consider the setting of game theory and draw connections to machine learning in general,
especially online learning and boosting. Let M be a matrix with all elements in [0, 1],
representing a game. As usual, consider the two players Max and Mindy. Recall that
Mindy’s goal is to choose a distribution P over rows of M , and plays i ∼ P , to minimize
her expected loss. Max chooses a distribution Q over columns and plays j ∼ Q to maximize
the same loss. We analyze the loss from the perspective of Mindy, whose expected loss is∑

i,j

P (i)M(i, j)Q(j) = P>MQ := M(P,Q).

Recall the following notation: M(P, j) denotes expected loss when Mindy plays, and Max
plays a pure strategy. Similarly, M(i, Q) denotes expected loss when Max plays a mixed
strategy, and Mindy plays a pure one. Although each of these is an expected loss, we will
often refer to them simply as a “loss”.

Also, in what follows, when taking a maximum or minimum, it should be understood
that our notation means that we are taking maximum or minimum over all mixed strategies
P , Q, or over all pure strategies i, j.

2 Fundamental Theorem of Zero-Sum Games

What does the optimal strategy look like for Mindy? Recall that M(P,Q) denotes expected
loss when Mindy plays P and Max plays Q. Let’s suppose Max makes the first move. Max
knows P , and so chooses Q to inflict the maximum loss on Mindy. We can write this loss as

max
Q

M(P,Q) = max
j
M(P, j),

where the equality holds because, for a fixed P , the maximum over a distribution of all
strategies is equivalent to the maximum over the pure strategies since the maximum is
always going to be realized by a choice of pure strategy. Then, Mindy will try to minimize
this loss with her play:

min
P

max
Q

M(P,Q).

By similar reasoning, if Max plays first, then the resulting loss would be

max
Q

min
P
M(P,Q).

This naturally leads to the question, which is better: to play first or last? One might think
that to play second is better, because more information will be available. Interestingly,
though, it does not matter whether one plays first or second. This has been proved in a



theorem due to von Neumann, sometimes called the Minimax Theorem, or the Fundamental
Theorem of Zero-Sum Games:

min
P

max
Q

M(P,Q) = max
Q

min
P
M(P,Q) := v,

where v is the value of game M . A more precise statement of the theorem is ∃P ∗ s.t.
∀Q, M(P ∗, Q) ≤ v, that is, Mindy has some strategy P ∗ that is the argmin strategy: for
any choice of Q by an adversary, the loss is bounded above by the value of the game.
P ∗ is optimal in the sense that Max also has a Q∗ that is optimal. Formally, ∃Q∗ s.t.
∀P, M(P,Q∗) ≥ v, which means that Max can force Mindy to suffer loss at least v, no
matter how she plays. These solutions are also called Nash equilibria.

2.1 Multiplicative Weights Algorithm

According to classical game theory, one should determine P ∗ through, say, a linear pro-
gram, and play according to that. There are some problems with that formulation, though.
Perhaps we don’t know M , or it is prohibitively large, so that we can’t form and solve the
LP in a reasonable amount of time. We have also made a very strong assumption, that our
opponent is both extremely smart, and only wishes to inflict the maximum loss on us (e.g.,
has no other aims independent of the game that would affect their choice of play). This
might be unrealistic.

How can we do a better analysis? Imagine playing over and over again against the same
opponent. Then we can learn the characteristics of this opponent, and adapt. Formally,
let’s consider a game M with n rows, and use the following Multiplicative Weights (MW)
algorithm:

Initialize P1(i) = 1/n
Fix β ∈ [0, 1]
For t = 1, . . . , T :

Mindy (the learner) chooses Pt
Max (the environment or adversary) chooses Qt [knowing Pt]
Mindy observes M(i, Qt) for all i
Mindy’s loss is M(Pt, Qt)
∀i : Pt+1(i) = Pt(i) · βM(i,Qt)/norm

Consider how this algorithm works: we maintain a distribution Pt that is initially uni-
form, and then update it multiplicatively according to the loss that would have been incurred
by any given pure strategy. Note that in this algorithm, Mindy gets to observe the entire
column of results for any choice she would have played. The resulting loss for Mindy over
the T iterations is

∑T
t=1M(Pt, Qt).

We would like some kind of regret bound on this quantity, one that compares the actual
loss received with the loss on the best possible fixed strategy if Mindy had actually known
each Qt ahead of time. In other words, we want

T∑
t=1

M(Pt, Qt) ≤ min
P

T∑
t=1

M(P,Qt) + small amount
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In fact, we do achieve this using the MW algorithm, and can prove the following using
similar techniques as for RWMA:

T∑
t=1

M(Pt, Qt) ≤ aβ min
P

T∑
t=1

M(P,Qt) + cβ lnn,

where the constants aβ, cβ are the same as in RWMA. As a corollary, if we set β = 1/(1 +√
2 lnn/T ), and let ∆T = O(

√
lnn/T ), then

T∑
t=1

M(Pt, Qt) ≤ min
P

T∑
t=1

M(P,Qt) + ∆T

Note that M(P ∗, Qt) ≤ v always, and so the first term on the right is at most v. This shows
MW never does much worse than what we would get using the classical approach to game
theory. But, it’s also possible that the algorithm will do much better if playing against an
opponent who is not fully optimal or adversarial.

2.2 Proof of Fundamental Theorem of Zero-Sum Games

We now proceed to prove von Neumann’s minmax theorem using MW and its analysis. For
each round t, we assume that Mindy picks Pt using the MW algorithm just described, and
we further assume that Max picks QT as

argmax
Q

M(Pt, Q).

This is called the “best response”. For the analysis that follows, let

P =
1

T

T∑
t=1

Pt

Q =
1

T

T∑
t=1

Qt.

We need to prove that max min ≤ min max and min max ≥ max min. The result that
max min ≤ min max is much more straightforward based on our intuition that playing
second is always better (or at least not worse) than playing first. We focus here on the
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second, less straightforward inequality:

min
P

max
Q

P>MQ ≤ max
Q

P
>
MQ (viewing the LHS as a function of P )

= max
Q

(
1

T

∑
T

Pt

)>
MQ

≤ 1

T

∑
t

max
Q

P>t MQ (taking max at each t could only be a bigger sum)

=
1

T

∑
t

P>t MQt (by assumption of how Qt was picked)

≤ min
P

1

T

∑
t

P>MQt + ∆T (using regret bound for MW)

= min
P
P>MQ+ ∆T

≤ max
Q

min
P
P>MQ+ ∆T (viewing LHS as function of Q).

As defined, ∆T → 0 as T →∞, concluding the proof. This proof additionally tells us (from
the chain of inequalities above) that

max
Q

M(P ,Q) ≤ max
Q

min
P
M(P,Q) + ∆T = v + ∆T .

This means that if Mindy plays with P , the loss is no more than v + ∆T . This means that
for any strategy Q that Max might play, if Mindy plays P then she will get within ∆T of
v, which is what she would get if she played using P ∗. So, it is in that sense that P is an
approximate min-max strategy. Similarly, Q is an approximate max-min strategy.

3 Connections to Online Learning

In this section we draw connections between game theory and the online learning setting
studied throughout the course. Recall the Online Learning problem:

For t = 1, . . . , T :
Observe xt ∈ X
Predict ŷt ∈ {0, 1}
Observe true label c(xt) ∈ {0, 1}

Note that a mistake is defined as ŷt 6= c(xt). We want our algorithm to do almost as
well as the best h ∈ H, that is

#mistakes ≤ min
h∈H

(#mistakes of h) + small amount

We define M in this case to have rows indexed by h ∈ H and columns indexed by x ∈ X .
Then, the loss M(h, x) = 1{h(x) 6= c(x)}. Using this game, we can apply MW as follows:
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For t = 1, . . . , T :
Use MW on matrix M to get Pt
Pick random h ∼ Pt
Let ŷt = h(xt)
Take Qt to be concentrated on xt (1 on xt, 0 otherwise)

We can now apply the analyses developed earlier to see that∑
t

M(Pt, xt) ≤ min
P

∑
t

M(P, xt) +O
(√

T ln |H|
)

= min
h∈H

∑
t

M(h, xt) +O
(√

T ln |H|
)

(min will be realized by some h).

Notice that

M(Pt, xt) = Eh∼Pt [M(h, xt)]

= Pr
h∼Pt

[h(xt) 6= c(xt)] = Pr [ŷt 6= c(xt)] .

We can make the connection more explicit by noticing that
∑

tM(h, xt) is the number of
mistakes that h makes, so we can rewrite the regret bound from MW as

E[# of mistakes learner makes] ≤ min
h∈H

(# mistakes h makes) +O(
√
T ln |H|)

This is exactly the statement about the expected number of mistakes of the learner that we
wanted to show above.

3.1 Connection to Boosting

We can also draw connections between boosting and the game theoretic setting discussed
at the start of these notes. Let us take H to be the weak hypothesis space, and X to be the
training set. (It is unusual for us to write the training set in this way, but the reason will
become clear shortly.) Recall the boosting problem:

For t = 1, . . . , T :
Booster picks Dt over X
Weak learner picks ht ∈ H s.t. Prx∼Dt [ht(x) 6= c(x)] ≤ 1

2 − γ
Output H = MAJORITY(h1, . . . , hT )

To fit this into the game theoretic framework, we first note that the game M must
be transformed, because we want to have a distribution over the X samples rather than
hypotheses, as in online learning. Hence, we define

M ′ = 1−M>,

which is a matrix whose entries represent exactly the function 1{h(x) = c(x)}. This is
exactly the same game as M , but with the roles of the row and column players reversed.
Specifically, we take the transpose to reverse rows and columns, then we negate the matrix
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to reverse what is being minimized or maximized (since the row player always wants to
minimize loss), and finally we add 1 so that entries of the new matrix will be in [0, 1].

This leads to the following game-theoretic style of algorithm for solving the boosting
problem:

For t = 1, . . . , T :
Use MW on M ′ to compute Pt
Let Dt = Pt
Get ht from the weak learner
Set Qt to be the distribution concentrated on ht

Then, we have that

M ′(Pt, ht) = Ex∼Pt

[
M ′(xt, ht)

]
= Pr

x∼Dt

[ht(x) = c(x)] (because of how M ′ is defined)

≥ 1

2
+ γ (by weak learning assumption)

Further, we know that the following relationship holds from our regret bound on MW:

1

2
+ γ ≤ 1

T

∑
t

M ′(Pt, ht) ≤ min
x∈X

1

T

∑
t

M ′(x, ht) + ∆T

That is, ∀x ∈ X :

1

T

∑
t

M ′(x, ht) ≥
1

2
+ γ −∆T >

1

2
,

where M ′(x, ht) is exactly 1{ht(x) = c(x)}, making the left-hand side exactly the fraction of
weak hypotheses ht that are correct on x. The rightmost inequality follows for ∆T smaller
than γ (in particular, for T = Ω(ln |X |/γ2) ). This implies that more than half of the
weak hypotheses ht are correct on x, and so the majority vote itself will be correct. Then,
H(x) = c(x)∀x ∈ X , as desired. In other words, after T rounds of boosting, the training
error of H will be zero.

We have seen, in the preceding notes, the connections between a game theoretic setting,
online learning, and boosting. And we have seen that these last two are in fact duals, in
that they use the same game matrix.
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