
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #23
Scribe: Jeffrey Helt April 29, 2019

1 Review of Bayes Algorithm

A few classes ago, we saw Bayes algorithm for online learning with log loss. Recall the
algorithm with uniform priors.

• N experts

• w1,i = 1
N for each of our N experts

• for t = 1, . . . , T :

expert i predicts distribution pt,i

master predicts distribution qt where qt(x) =
∑N

i=1wt,i · pt,i(x)

observe xt ∈ X
for all i, update wt+1,i =

wt,ipt,i(xt)
Z where Z is the normalization constant.

We previously proved the following regret bound for the Bayes algorithm:

−
T∑
t=1

ln qt(xt) ≤ min
1≤i≤N

[
−

T∑
t=1

ln pt,i(xt)

]
+ lnN (1)

2 Portfolio selection

Last class, we started looking at the portfolio selection problem in which we want to use
the framework of online learning to develop a good investment strategy. Recall the setup
for the problem:

• N stocks

• Let pt(i), the price relative, be defined as

pt(i) =
price of stock i at the end of day t

price of stock i at start of day t

• Define St as the wealth at the start of day t, and assume S1 = 1.

• Define wt(i) as the fraction of wealth invested in stock i at the start of day t, so∑
iwt(i) = 1.

Observe (from last time) St+1 = St(wt · pt) and ST+1 =
∏T

t=1(wt · pt). Our objective is to
maximize ST+1, which we can rewrite in an equivalent form:

max

[
T∏
t=1

(wt · pt)

]
≡ min

[
−

T∑
t=1

ln(wt · pt)

]
Then the outline of the learning problem is as follows:



• for t = 1, . . . , T :

choose wt

observe pt

loss = − ln(wt · pt)

As in all online learning problems, we need to decide what we want to compare our
algorithm’s performance to (i.e., what we’re competing with). In past problems, it has been
natural to benchmark our algorithm’s performance against the best expert. Here we ask,
can we devise an algorithm that does (nearly) as well as a strategy in which we had invested
all of our money in the best stock (which we only know in retrospect)?

3 A first cut: Applying Bayes algorithm

Given the similarities of the portfolio selection problem to previous problems, one natural
idea is try to retrofit our problem into the Bayes framework, which will hopefully allow us
to reuse our analysis of Bayes algorithm to get a regret bound. Since we will be referring
to values from both the Bayes and the portfolio selection algorithms and their notation is
similar, we use a tilde to denote values in the Bayes algorithm to avoid confusion.

We start by assuming there exists some C such that ∀t,∀i : C ≥ pt(i), which implies
pt(i) ∈ [0, C] for all t and i.

We then need to define the inputs to the Bayes algorithm and how we will use the
outputs. We define the domain of our experts (for Bayes) as X̃ = {0, 1}. We then define
the N experts:

p̃t,i(1) =
pt(i)

C
p̃t,i(0) = 1− p̃t,i(1)

Let x̃t = 1 for all t. On every round, we pass this input to the Bayes algorithm and get
back w̃t,i∀i. Since there is a one-to-one correspondence between the experts in the Bayes
world and our stocks, we can just use directly these weight vectors:

∀i : wt(i) = w̃t,i

In order to compute the regret bound, we need to calculate q̃t(x̃t).

q̃t(x̃t) = q̃t(1) since ∀t : x̃t = 1

=

N∑
i=1

w̃t,ip̃t,i(1)

=
N∑
i=1

w̃t,ipt(i)

C

=
wt · pt

C

2



We can now apply our (previously proved) regret bound for Bayes with uniform priors.

−
T∑
t=1

ln
(wt · pt

C

)
= −

T∑
t=1

ln q̃t(x̃t)

≤ min
1≤i≤N

[
−

T∑
t=1

ln p̃t,i(x̃t)

]
+ lnN using Bayes regret bound

≤ min
1≤i≤N

[
−

T∑
t=1

ln
pt(i)

C

]
+ lnN by definition

Notice we can further simplify this bound by canceling the C’s on both sides, which leaves
us with

−
T∑
t=1

ln (wt · pt) ≤ min
1≤i≤N

[
−

T∑
t=1

ln pt(i)

]
+ lnN (2)

We showed previously the left-hand side of this inequality is equivalent to the negative
log of the amount of money the algorithm has accumulated over T rounds. Similarly, for
a fixed stock i, −

∑T
t=1 ln pt(i) is the wealth accumulated over T rounds by a strategy that

only invested in stock i. This leads us to the following interpretation of the bound above.

− ln(wealth of algorithm) ≤ − ln(wealth of best stock) + lnN

We can then raise e by both sides and simplify to get

(wealth of algorithm) ≥
(

1

N

)
(wealth of best stock)

As it turns out, this bound is somewhat trivial. To see this, let’s examine our returns when
using a simple “buy and hold” strategy, where we simply divide our initial wealth evenly
among the N stocks and make no further adjustments on any following rounds.

What would our return be under the buy and hold strategy? Well, the 1/Nth of our
wealth that we invested in the best stock would yield the same returns as the best stock.
Thus, even if we lost all of our other money, the simple buy and hold strategy would satisfy
our lower bound on returns above. In fact, it is possible to show, through simplification
and expanding out definitions, that the algorithm developed above is exactly equivalent to
the buy and hold strategy.

4 Portfolio rebalancing

Our somewhat trivial bound above for our investing strategy based on Bayes algorithm
motivates us to try to find something better. A common idea used in investing is the idea
of “rebalancing,” where a person’s stock holdings are shifted at the end of every day (or
more generally, some time interval) to keep the proportion of their wealth invested in each
stock constant over time. The general term for this class of strategies is called a “constant
rebalanced portfolio” or CRP, and when the proportions of each stock are equal, it is referred
to as a uniform CRP.

Intuitively, rebalancing causes us to buy low and sell high. Observe the following toy
example with 2 stocks, one with static prices and the other with volatile prices.

3



Prices at start of day:

Day Stock 1 Stock 2

1 1 1
2 1 0.5
3 1 1
4 1 0.5
5 1 1
6 1 0.5

...

Price relatives at end of day:

Day Stock 1 Stock 2

1 1 1/2
2 1 2
3 1 1/2
4 1 2
5 1 1/2
6 1 2

...

Our buy and hold strategy has a return of zero with these two stocks because over the
long-run their prices don’t change. However, observe the performance of a uniform CRP in
which we rebalance at the end of every day.

S1 = 1

S2 = S1

(
1

2
· 1 +

1

2
· 1

2

)
=

3

4
S1

S3 = S2

(
1

2
· 1 +

1

2
· 2
)

=
3

2
S2

...

St+2 =
3

4
· 3

2
St =

9

8
St

The last equation shows that every two days, our wealth increases by 12.5%
(
i.e., 9

8 − 1
)

using the uniform CRP strategy.

5 Universal Portfolio Algorithm (UP)

In general, a CRP is defined by a vector of length N , where N is the number of stocks.
More formally, a CRP is defined by

b = 〈b1, . . . , bN 〉 where ∀i : bi ≥ 0 and

N∑
i=1

bi = 1

For a fixed number of stocks N , there are infinitely-many CRPs, one for each value of b. In
fact, since bi ∈ R, there are uncountably-many CRPs. However, since we have the constraint
that

∑
i bi = 1, the CRPs form an (N − 1)-dimensional simplex in RN . For instance, with

N = 3, we can visualize the space of CRPs as a two-dimensional equilateral triangle in R3.

b

Given that there are infinitely-many CRPs, can we ever hope to have an online algorithm
that does almost as well as the best CRP, which we only know in hindsight? It turns out the
answer is yes. The key idea is to simultaneously invest an (infinitesimally) small portion of

4



our total wealth according to each possible CRP. This is the key idea behind the universal
portfolio (UP) algorithm.

More concretely, we want to calculate wt(i) for all t and i to serve as the weights in our
online investment algorithm. We are using the same notation here as we did when applying
Bayes algorithm. For a fixed N , define ∆ as the set of all CRPs. That is,

∆ = {all CRPs} =

{
b ∈ [0, 1]N :

N∑
i=1

bi = 1

}

Let dµ(b) denote the portion of our wealth that we’re investing according to b. Then for a
fixed b, observe that

∏t−1
s=1(b · ps) · dµ(b) is the amount of wealth invested according to b

after t− 1 days, since we started with dµ(b) and rebalanced according to b at the start of
every day. Similarly, the fraction of stock i that we hold due to b at the beginning of day
t is bi

∏t−1
s=1(b · ps) · dµ(b). Using these two ideas, we can now write down wt(i). Let

wt(i) =

∫
b∈∆ bi

∏t−1
s=1(b · ps)dµ(b)∫

b∈∆

∏t−1
s=1(b · ps)dµ(b)

where the integrals are taken over the space of all possible CRPs (i.e., the simplex). The
numerator is the total wealth invested in stock i on day t, and the denominator is the total
wealth of the algorithm at the start of day t.

5.1 Regret bounds

We now prove regret bounds for the UP algorithm.

Theorem 1. After T rounds,

(wealth of UP) ≥ 1

(T + 1)N−1
(wealth of best CRP)

We will actually prove a slightly weaker version of this regret bound because the proof
is simpler and more intuitive. Namely, we will show, after T rounds,

(wealth of UP) ≥ 1

e(T + 1)N−1
(wealth of best CRP)

Proof. Let b∗ be the best CRP in hindsight. The outline of the proof is as follows. We
start by arguing that the CRPs b that are close to b∗ in the simplex, which we call b∗’s
neighborhood, make almost as much money as b∗. Then we argue that we invested a
decent amount of our total wealth in strategies that lie within the neighborhood. Finally,
we combine these two ideas to prove our regret bound.

Step 1. Let ∆ = {b ∈ [0, 1] :
∑

i bi = 1} as above, and define N (b∗), the neighborhood
of b∗ for some fixed α ∈ [0, 1], as:

N (b∗) = {(1− α)b∗ + αz : z ∈ ∆} .

5



Consider a single b ∈ N (b∗). Then

b = (1− α)b∗ + αz

=⇒ b · pt = (1− α)b∗ · pt + αz · pt︸ ︷︷ ︸
≥0

=⇒ b · pt ≥ (1− α)b∗ · pt

=⇒
T∏
t=1

(b · pt) ≥ (1− α)T
T∏
t=1

(b∗ · pt)

This tells us that after T days, the wealth accumulated by investing according to strategy
b in the neighborhood of b∗ is at least (1 − α) of the wealth accumulated by investing
according to strategy b∗. In other words,

(wealth of b) ≥ (1− α)T (wealth of b∗).

Step 2. Our initial wealth will be distributed over all of the b ∈ ∆. Thus, we can
measure the proportion of wealth invested in N (b∗) by relating the volume of N (b∗) to the
volume of ∆.

Vol(N (b∗)) = Vol({(1− α)b∗ + αz : z ∈ ∆})
= Vol({αz : z ∈ ∆}) (1− α)b∗ just translates the neighborhood

= αN−1Vol({z : z ∈ ∆})
= αN−1Vol(∆)

The penultimate line holds because, as mentioned earlier, ∆ is an (N − 1)-dimensional
simplex in RN . When each z ∈ ∆ is scaled by some constant α ∈ [0, 1], the volume of the
resulting simplex is scaled by αN−1.

Recall the fraction of wealth initially invested in N (b∗) is given by Vol(N (b∗))/Vol(∆).
Thus, the equality above tells us that αN−1 of our wealth is initially invested in the set of
strategies b ∈ N (b∗).

Step 3. The total wealth of our algorithm then is lower bounded by the wealth generated
by only the strategies in N (b∗). Since we know that each of these strategies earns at least
(1 − α)T (wealth of b∗), we can then get a lower bound on the total wealth earned under
UP. Combining steps 1 and 2, we see

(wealth of UP) ≥ αN−1(1− α)T (wealth of best CRP b∗)

≥ 1

e(T + 1)N−1
(wealth of best CRP b∗) taking the best α = (T + 1)−1

This concludes our analysis of the universal portfolio algorithm. We will now move on
to our final topic of the semester, connections between machine learning and game theory.

6 Connections to game theory

Game theory is the mathematical study of games. In addition to more obvious games, such
as checkers and chess, we can study many interactions through the lens of game theory.

6



Many interactions between people, companies, and animals can all be viewed as games.
Similarly, machine learning studies the interaction between a learner and the environment,
or adversary. This has been especially obvious in our recent investigation of online learning,
where we’ve analyzed algorithms under adversarial conditions.

Let us start by developing some of the language used by game theorists. Rock paper
scissors (RPS) serves as the canonical game used to introduce game theory. It involves two
players. At each round, both players simultaneously select one of rock, paper, or scissors,
and then the winner of the round is determined based on the players’ choices. For instance,
if one player chooses paper and the other chooses scissors, the second player wins because
by the rules, “scissors cut paper.”

As we have done previously in class, we call our players Max and Mindy. We can
represent a game like RPS by a matrix in which Max’s choices are denoted by columns and
Mindy’s choices are denoted by rows. Each entry M(i, j) in the matrix gives the outcome
of the game when Max chose i and Mindy chose j. For instance, for RPS we have

Max

R P S

Mindy

R 1
2 1 0

P 0 1
2 1

S 1 0 1
2

where the outcomes of each instance of RPS are given in the form of Mindy’s loss. A zero
means Mindy won, 1

2 denotes a tie, and a one means Max won. In general, we can write
down any two-player, zero-sum game using a matrix like the one above, although it may
require an enormous matrix as is the case for chess. “Zero-sum” here means that the rules
of the game are such that if one player gains an advantage, then the other play must have
lost some advantage (and vice-versa).

In general, we can write two-player, zero-sum games using a matrix M. For now, we
assume Max and Mindy make their choices simultaneously.

M . . . j . . .

1

2
...

i M(i, j)
...

where M(i, j) ∈ [0, 1] denotes Mindy’s loss. Individual columns or rows in the matrix are
called pure (i.e., deterministic) strategies.

We can also define mixed (i.e., random) strategies. Mindy defines a distribution P over
the rows in M and then her choice at each round is made by drawing i ∼ P. Similarly, Max
defines a distribution Q over the columns and then chooses by drawing j ∼ Q.

We will continue our discussion of the connections between game theory and machine
learning next class, but for now, we introduce some additional notation. We write Mindy’s

7



expected loss as

Mindy’s expected loss =
∑
i,j

P (i)M(i, j)Q(j)

= PTMQ

We will also use the notation M(P,Q) to denote PTMQ. Similarly, we use M(i,Q) to
denote Mindy’s expected loss when she plays with pure strategy i against Max’s mixed
strategy Q.

8


