
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #22
Scribe: Alexander Strzalkowski April 24, 2019

1 Review of Bayes Algorithm

Last class we saw an online algorithm to minimize log-loss in the online setting known as
Bayes algorithm:

• N : Number of experts

• X : The space of outcomes

• π: A prior distribution over experts with πi ≥ 0 and
∑N

i=1 πi = 1

• Initialize weights: w1,i = πi for all i ∈ {1, . . . , N}.

• for t = 1, . . . , T :

– Expert i predicts distribution pt,i

– Learner predicts qt where qt(x) =
∑N

i=1wt,ipt,i(x)

– Observe xt ∈ X
– ∀i update the weights: wt+1,i =

wt,ipt,i(xt)
qt(xt)

We were able to show the following regret bound for the algorithm above, namely

−
T∑
t=1

ln qt(xt) ≤ min
i

[
−

T∑
t=1

ln pt,i(xt)− lnπi

]
. (1)

The analysis for (1) followed from pretending that our data was generated by the following
random process:

1. Choose one expert i∗ with probability: Pr[i∗ = i] = πi.

2. xt is generated probabilistically from the prediction of expert i∗ conditioned on the
history: Pr[xt|xt−11 , i∗ = i] = pi(xt|xt−11) = pt,i(xt).

3. The learner predicts xt according to: qt(xt) = q(xt|xt−11) = Pr[xt|xt−11].

As a reminder xt−11 = 〈x1, x2, . . . , xt−1〉. Specifically, it denotes the vector that holds all
observed data points up to round t− 1. Note that the above framework considers only the
advice of a single expert i∗ for all T rounds. We next review and extend the case in which
it might be better to consider the advice of more than one expert over all T rounds.

Figure 1: An illustration of why switching experts would be better than choosing one expert
for all T rounds.

2 Applying Bayes Algorithm to Switching Experts

As we started exploring last class, what happens if some experts outperform other experts
during certain sub-intervals in [1, T]? If this were the case, then it would not be ideal to
choose a single expert for all T rounds. Intuitively, it makes sense that if we reach round
t and another expert performs better than the one’s advice we have been using we should
switch to that other expert.

To be more concrete, consider Figure 1 which shows that expert 17 performs the best
from rounds 1 to t1, while expert 2 performs the best from t1 to t2 and expert 5 does the
best from t2 until the last round T . In this example, it would be best to use expert 17’s
advice for t ∈ [1, t1), then switch to expert 2’s advice for t ∈ [t1, t2), and then switch to
expert 5’s advice for t ∈ [t2, T]. This example illustrates that we are aiming for an algorithm
that performs almost as well as the best “switching sequence” of experts.

This motivates the switching experts framework where we have:

• “base” experts: i ∈ {1, . . . , N};

• “meta”-experts: e = 〈e1, . . . , eT 〉, where each et ∈ {1, . . . , N}.

Observe that the number of meta-experts is exponential in N , since for each element of
a meta-expert we have N different choices for each round t resulting in a total possible
selection of NT meta-experts! It is important to see that a meta-expert is simply a way
to keep track of which base experts we would like to use on which round. For example, if
e5 = 4, then our meta-expert would use the prediction of base expert 4 on round 5.

We want to use Bayes algorithm on these meta-experts, but with an appropriate prior
π(e). To define this prior, we describe a “pretend” process for generating a random meta-
expert, with higher probability under that prior being given to meta-experts with fewer
switches, namely:

1. Choose e∗1 uniformly at random: Pr[e∗1 = i] = 1
N .

2. Choose e∗t+1 according to

e∗t+1 =

{
e∗t with probability 1− α
Choose any other ei uniformly with probability α

The second step can be more compactly summarized in the following conditional probability:

Pr[e∗t+1|e∗t] =

{
1− α if e∗t+1 = e∗t
α

N−1 otherwise.
(2)

2

We can now directly apply Bayes algorithm with the aforementioned prior to the switch-
ing experts case, and can obtain a regret bound directly from (1) that looks roughly like

(loss of algorithm) ≤ (loss of e)− lnπ(e),

where loss here refers to log-loss and π(e) = Pr[e∗ = e] denotes the prior probability
sampled from the aforementioned process for the meta-expert. In particular, we would like
the right-hand side to hold for the best meta-expert in hindsight. If our meta-expert e
switches k times, then the negative logarithm of its prior is given by

− lnπ(e) = lnN + k ln
N − 1

α
+ (T − k − 1) ln

(
1

1− α

)
. (3)

To see an explicit derivation of (3), see lecture 21 notes. The minimum of (3) is attained at
α∗ = k

T−1 . This can be found by differentiating (3) with respect to α, setting the resulting
equation to zero and solving for α. Note that this result makes intuitive sense: if we expect
that our meta-expert switches k times, then the minimum probability is given by the rate it
switches over the whole period excluding the first round since it can’t switch then, namely
k/(T − 1). Plugging α∗ into (3) yields

− lnπ(e) =

(∗)︷︸︸︷
lnN +

(∗∗)︷ ︸︸ ︷
k ln(N − 1) +

(∗∗∗)︷ ︸︸ ︷
(T − 1)H

(
k

T − 1

)
, (4)

where H denotes the entropy function. We originally defined the entropy as a function that
takes as input a random variable — not a real number. However, when we take the entropy
of a real number we mean it to represent the entropy of a Bernoulli random variable with bias
equal to the real number. Concretely, if b ∈ R and X ∼ Bernoulli(b), then H(b) := H(X).

If we replaced all of the natural logarithms with logarithms of base 2 in (4), we would
be able to interpret each term in the language of coding that was discussed last class.
Specifically in (4),

(*) Number of bits needed to encode the expert chosen on the first round.

(**) Number of bits needed to encode switching to another expert (N − 1 other experts)
and this happens k times.

(***) The uncertainty at each of the T − 1 time points that a switch will occur, each with
probability k/(T − 1). This is the additional number of bits one needs to specify the
switches.

By plugging − lnπ(e) directly into inequality (1), the bound derived for Bayes algorithm,
we obtain the kind of regret bound we were looking for in the first place, where every
switch only incurs an additional regret of about lnN + lnT . This bound is reasonable if
there aren’t too many switches. However, if we just naively applied Bayes algorithm to the
case of switching experts it would be computationally infeasible. Recall that the number of
total possible meta-experts is NT , and thus our algorithm would have to maintain weights
for each meta-expert. This would imply that our algorithm runs in time linear in NT ! If
there were no structure in the meta-experts’ predictions we would be unable to do better.
Fortunately, the structure given to our meta-experts with the prior generation process will
provide us a means to be able to modify Bayes algorithm for the switching experts case
that will run drastically faster.

3

3 The Weight Share Algorithm

Recall that before when we were dealing with a single best expert our predictions looked
like

Before: Pr[xt|xt−11 , i∗ = i],

but our predictions in the switching experts case now looks like

Now: Pr[xt|xt−11 , e∗ = e].

In the switching experts case, the above notation stands for the prediction of meta-expert
e on xt. However, recall that a meta-expert’s prediction on round t on xt is given by its
corresponding base expert et on xt. Thus, we can reduce the prediction of the switching
experts case to

Pr[xt|xt−11 , e∗ = e] = Pr[xt|xt−11 , e∗t = i] = pi(xt|xt−11).

The above reduces to exactly what we had before in the single expert case!
We now will rewrite the prediction of the learning algorithm. By marginalizing we have

that the prediction of our learner reduces to

q(xt|xt−11) = Pr[xt|xt−11] (5)

=
N∑
i=1

Pr[e∗t = i|xt−11]︸ ︷︷ ︸
vt,i

·Pr[xt|e∗t = i, xt−11]︸ ︷︷ ︸
pi(xt|xt−1

1)

(6)

=
N∑
i=1

vt,ipi(xt|xt−11). (7)

Observe that (7) is almost what we had in the single expert case, except now we have
vt,i’s instead of wt,i’s. We just need to calculate the vt,i’s before we can present our modified
version of Bayes algorithm.

From the pretend prior generation process we know that

v1,i = Pr[e∗1 = i] =
1

N

for any i. Now we only need to compute vt+1,i,

vt+1,i = Pr[e∗t+1 = i|xt1] (8)

=

N∑
j=1

Pr[e∗t = j|xt1] · Pr[e∗t+1 = i|e∗t = j, xt1] (9)

where line (9) follows from marginalization. The first term in the sum on line (9) can be
reduced to familiar terms by Bayes’ theorem namely

Pr[e∗t = j|xt1] = Pr[e∗t = j|xt, xt−11]

=
Pr[xt|e∗t = j, xt−11] · Pr[e∗t = j|xt−11]

Pr[xt|xt−11]

=
pj(xt|xt−11) · vt,j

qt(xt)
.

4

The second term in the sum on line (9) is actually equivalent to (2), as the event e∗t+1 = i
is conditionally independent to xt1 conditioned on e∗t = j. Hence,

Pr[e∗t+1 = i|e∗t = j, xt1] = Pr[e∗t+1 = i|e∗t = j] =

{
1− α if i = j
α

N−1 otherwise.

We can now present Bayes Algorithm for Switching N Base Experts, where the red text
below highlights the differences between this algorithm and the original version of Bayes
Algorithm:

• Initialize v1,i = 1
N for all i.

• for t = 1, . . . , T :

– Base expert i predicts distribution pt,i

– Learner predicts qt where qt(x) =
∑N

i=1 vt,ipt,i(x)

– Observe xt

– For all i, update vt+1,i according to:

vt+1,i =
N∑
j=1

vt,j · pt,j(xt)
qt(xt)

·

{
1− α if i = j
α

N−1 otherwise.

Observe that the above algorithm has an O(N2) runtime per round with the major
bottleneck coming from the update step requiring O(N2) computations. Although the
above algorithm is already quite fast, being polynomial rather than exponential, we can do
even better!

First, define cj to be the fractional term in the update, that is

cj :=
vt,j · pt,j(xt)

qt(xt)
.

Rewriting the update term using indicators yields

vt+1,i =

N∑
j=1

[
cj

(
α

N − 1
+ 1{i = j} ·

(
1− α− α

N − 1

))]

=
α

N − 1

 N∑
j=1

cj

+ ci

(
1− α− α

N − 1

)

=
α

N − 1
· 1 +

vt,ipt,i(xt)

qt(xt)
·
(

1− α− α

N − 1

)
where the last line follows from the fact that the cj ’s sum to 1 due to the normalizing qt(xt)
in the denominator. Consequently, for each i, the update step now takes O(1) time, instead
of O(N) which means that the modified version of Bayes algorithm runs in O(N) time!
Observe that the term ci is identical to the weight update we would have done in the case
of no switching experts. The only difference is now we redistribute the weights to the other
experts on each update. In this form, the modified Bayes algorithm is a special case of a
more general algorithm known as the weight share algorithm.

5

4 Preview of Portfolio Selection

Now we move our focus to applying online learning to learn strategies that are good for
investing. To do so, we first introduce some notation and the general setup. Instead of N
experts we now have N stocks we can invest in. Moreover, let

pt(i) =
price of stock i at end of day t

price of stock i at start of day t

where pt(i) is known as the price relative. For example, if stock i increases by 5%, then
pt(i) = 1.05. However, if stock i decreases by 5%, then pt(i) = 0.95. Moreover, we let

St = wealth at the start of day t

and we assume that S1 = 1. Furthermore, let

wt(i) = fraction we invest in stock i at the start of day t

where for each t we have
∑N

i=1wt(i) = 1. Observe from these definitions that

Stwt(i) = wealth invested in stock i at the start of day t

and
Stwt(i)pt(i) = wealth invested in stock i at the end of day t.

This implies that our total wealth at time t+ 1 is given by

St+1 =
N∑
i=1

Stwt(i)pt(i) = St(wt · pt).

Our objective is to maximize our total wealth at the end of T days. Specifically, we would
like to maximize ST+1 given by

ST+1 = 1 · (w1 · p1) · · · (wT · pT) =
T∏
t=1

(wt · pt).

Equivalently, we can view maximizing St+1 to minimizing

max
T∏
t=1

(wt · pt) ≡ min
T∑
t=1

(− ln(wt · pt)),

where the maximum and minimum is over the choice of wt’s. Looking closely, it seems that
the summand on the right-hand side looks like a log-loss. With this motivation in mind, we
can pose investing as an online learning problem

for t = 1, . . . , T :

– Learner picks wt

– World chooses pt

– Loss = − ln(wt · pt)

6

We will analyze the case in which pt is chosen adversarially. We will try to see if we can
use Bayes Algorithm in this situation. Note that we can map one-to-one each expert i to a
stock i. Moreover assume that we can bound the price relative over t and i by a constant,
specifically

max
t,i

pt(i) ≤ C

which directly implies that pt(i) ∈ [0, C]. Note that this is a perfectly reasonable assump-
tion. For example, in the real world C might be equal to a trillion. This bound on C implies
that it would be impossible for any person to invest a dollar and see it increase in value to
a trillion dollars in one day. Arriving at a naming conflict, from here on out any variable
with a tilde above it will refer to the corresponding variable in the Bayes algorithm setting.
Let X̃ = {0, 1} denote the set of outcomes for which the probability distributions will be
defined. Moreover, let

p̃t,i(1) =
pt(i)

C
.

The above lets us define p̃t,i(0) = 1− p̃t,i(1). The rest of the reduction will be given in the
next lecture.

7

