
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #21
Scribe: Xin Wan April 22, 2019

Last time we talked about online learning of probability distributions, and showed why
log loss is a convenient loss function to work with. As a reminder, the algorithm we worked
with is summarized below:

Algorithm 1 online learning of probability distribution.

1: Initialize w1,i = 1
N

2: for t = 1, . . . , T do
3: expert i predicts distribution pt,i on X
4: learner/master predicts qt on X

5: qt(x) =
∑N

i=1wt,ipt,i(x)

6: observe xt ∈ X
7: loss = − ln qt(xt)

8: wt+1,i =
wt,ipt,i(xt)
qt(xt)

9: end for

We will discuss the formula in the two boxes in this class. Last class, we also related
the above algorithm to information / coding theory, where we set up the analysis as the
following:

Assume Alice wants to send messages x1, . . . , xt−1 to Bob, and we denote xt−1
1 =

〈x1, ...xt−1〉. If pt is the estimated probability of xt given xt−1
1 , then we need − lg pt(xt)

bits to encode the message.
We will prove a bound for Algorithm 1 above that will be something like (note that here

we are switching to log base-2 for comparison with the encoding analogy):

−
T∑
t=1

lg qt(xt) ≤ min
i

[
−

T∑
t=1

lg pt,i(xt)

]
+ small

Linking this to the coding theory setting, the left-hand side is equal to the total number
of bits needed to encode x1, ..., xT for the learner, whereas the first term on the right-hand
side is the total number of bits needed for the best encoding method (out of the N available
ones). The result is called “universal compression” in coding theory, since the result is a
single coding method that, on every sequence of messages, is almost as good as the best of
the N coding methods (for that individual sequence).

Now we introduce some notation which is meant to be suggestive of how the experts
and learner are each trying to estimate the conditional probability of xt given xt−1

1 :

pt,i(xt) = pi(xt | xt−1
1)

qt(xt) = q(xt | xt−1
1)

Although online learning should be in an “adversarial” setting, where data might be
chosen and presented by an “adversary” that tries to make learning hard, we can actually

derive an algorithm here by pretending that data is generated by a random process, and
the algorithm can be then shown to hold for all data, even including sequences presented
by an adversary. Hence. let’s for now pretend that x1, ..., xT are generated as follows.

1. One expert i∗ is chosen uniformly at random so that Pr[i∗ = i] = 1
N

2. The sequence x1, ..., xT is generated by expert i∗ so that

Pr[xt | xt−1
1] = pi(xt | xt−1

1)

Here, Pr[·] means probability with respect to this pretend random process.
Having defined this process, we next define the algorithm’s prediction q(xt | xt−1

1) to
be the conditional probability of xt given xt−1

1 according to this random process, that is,
Pr[xt | xt−1]. Then, to compute q, we have:

q(xt | xt−1
1) = Pr[xt | xt−1

1]

Marginalizing, we have =

N∑
i=1

Pr[i∗ = i | xt−1
1]Pr[xt | i∗ = i, xt−1

1]

Using our notations, this is =
N∑
i=1

wt,ipi(xt | xt−1
1)

where we define wt,i to be Pr[i∗ = i | xt−1
1]. Thus, as in Algorithm 1, we maintain one

weight wt,i for each expert. These weights are initialized to be uniform, are used to compute
the predicted distribution q as above, and are updated as below.

Now we compute wt,i

w1,i = Pr[i∗ = i] =
1

N

wt+1,i = Pr[i∗ = i | xt1] = Pr[i∗ = i | xt, xt−1
1]

=
Pr[i∗ = i | xt−1

1]Pr[xt | i∗ = i, xt−1
1]

Pr[xt | xt−1
1]

, by Bayes Rule

=
wt,i pi(xt | xt−1

1)

q(xt | xt−1
1)

, using our definition and notation above

The denominator in the above expression can be understood as a normalization factor.
Recall that for WMA algorithm, the update was to multiply the weight of each expert by
β if it made a mistake, and by 1 (i.e. unchanged) if not. Since we were there using 0-1 loss
(which is 1 for mistake, 0 for no mistake), we can write the update as

wt+1,i =
wt,i β

loss

normalization

When working with log loss, the loss of each expert is − ln pt,i(xt). If we then set β = e−1,
then the update rule given above can be seen to have exactly the same form.

We next prove the following regret bound for the algorithm described above.

2

Theorem 1 In the setting above,

−
T∑
t=1

ln qt(xt) ≤ min
i

[
−

T∑
t=1

ln pt,i(xt)

]
+ lnN

Proof of the theorem:

1. Step 1
First we compute the probability of any sequence xT1 according to our pretend random
process:

Pr[xT1] = Pr[x1, ..., xT]

= Pr[x1]Pr[x2 | x1]Pr[x3 | x1, x2] · · ·Pr[xT | xT−1
1] , by the chain rule

=
T∏
t=1

Pr[xt | xt−1
1] , this is just simplifying notation

=
T∏
t=1

q(xt | xt−1
1) , using the notation we defined previously

Note that the equality above is true for all sequences of xt’s

2. Step 2
Then we compute the probability of a given base expert predicting the sequence

Pr[xT1 | i∗ = i] =

T∏
t=1

pi(xt | xt−1
1) , again, chain rule

3. Step 3
The total probability of this sequence is therefore summation (across all base experts)
of the probability of choosing each base expert multiplied by the probability that it
predicts the sequence.

Pr[xT1] =

N∑
i=1

Pr[i∗ = i]Pr[xT1 | i∗ = i]

≥ Pr[i∗ = i]Pr[xT1 | i∗ = i] for any particular i

=
1

N
Pr[xT1 | i∗ = i]

Now we can put these steps together:

3

−
T∑
t=1

ln qt(xt | xt−1
1) = − ln

T∏
t=1

qt(xt | xt−1
1)

= − lnPr[xT1], by Step 1

≤ − ln

[
1

N
Pr[xT1 | i∗ = i]

]
, by Step 3

= − ln

[∏
t

pi(xt | xt−1
1)

]
+ lnN, by Step 2

= −
∑
t

ln
[
pi(xt | xt−1

1)
]

+ lnN

Since this is true for every expert i, it is also true for the best expert, which proves the
theorem.

�
There are two ways to think about this theorem: first, we can divide both sides by T .

Then the theorem says that the “per time-step loss” of the learner quickly approaches that
of the best expert as T increases. Alternatively, we can divide both sides by a constant
and change ln to log2. This relates to coding theory: first notice that the term on the left
is the number of bits that the algorithm will use to encode the sequence of messages xT1 ,
and the first term on the right is the same thing for the best of N given coding methods.
The bound says that the algorithm will never use more than lgN bits than the best of the
coding methods, and that is true for every sequence xT1 . There is an obvious alternative of
encoding the messages, which is (for the sender) to try all N methods, pick the one that is
best for the sequence xT1 , and then send over the index of that best method together with
the encoding that it gives. Since sending the index of the method requires lgN bits, this
will require the same overall code length as for our algorithm. But our algorithm can be
implemented online, one xt at a time.

One way to potentially improve the performance of the algorithm is to use a non-uniform
distribution when initializing the weights. That is, we can choose a “prior”, which is a set
of non-negative weights πi over the experts which sums to one. We then use πi to set the
initial weights, or equivalently, to choose i∗ in the pretend process for generating data.

w1,i = Pr[i∗ = i] = πi, πi ≥ 0,
∑

πi = 1

Using this prior would lead to the following bound:

−
T∑
t=1

ln qt(xt) ≤ min
i

[
−

T∑
t=1

ln pt,i(xt)− lnπi

]

The idea is to choose a prior that gives higher probability πi to experts that we think
are more likely to be good. This bound implies that the regret relative to experts with
higher prior probability πi will be lower.

Now we consider a new scenario: so far we have only looked at an algorithm that
performs almost as well as the best single expert for the entire sequence, which means we

4

are implicitly assuming that there is one expert that will be reasonably good the entire
time. But it might be the case that the nature of the data sequence changes in time so that
one expert might be best for a while, but then another one might be good for a while, and
so on, so that the best expert is “switching” from time to time. We now want to find an
algorithm whose performance is almost as good as the best switching sequence of experts.

For the purpose of our analysis, we aim to do as well as the best switching sequence
of experts with at most k switches between time 1 and T , and there are again N “base
experts”.

One approach to solving this problem is to create “meta-experts” by combining different
base experts at different time steps. Specifically, a meta-expert is a constructed sequence of
base experts. It behaves like a particular base expert at any given time, but changes from
expert to expert as time changes. For example, a particular meta-expert can be “expert
3 at time 1 to 17, expert 8 at time 18 to 93, . . . ”. The prediction of a particular meta-
expert therefore exactly matches that of a particular sequence of ”switching experts” as we
discussed above. Specifically, we can consider one meta-expert for every switching sequence
with k switches. The theorem above applied on meta-experts as experts immediately gives
us a regret bound that is log of the number of meta-experts. The loss of the resulting
algorithm will be at most the loss of the best meta-expert (that is the best switching
sequence), plus lnM , where M is the total number of meta-experts.

By simple combinatorics, since we can choose from any of the N base experts between
each switch, and we can choose any of the switches to be between t = 1 and t = T , the
total number of different meta-experts is approximately:

M ≈ Nk+1 T k

Then if we apply the theorem above, we will get a similar result except the last term changes
from lnN to

lnM ≈ lnN + k(lnN + lnT),

which says that each additional switch of expert in the process brings a cost of about
lnN + lnT to the bound.

There is a problem, however, with the approach above. It gives a good regret bound,
but computationally, we need to maintain one weight for every meta-expert, which will be
extremely expensive if the number of meta-experts is large or the sequence is long. Hence,
now we will focus on an alternative method that appears expensive, but, we will see, can
be implemented very efficiently.

The alternative way to construct “meta-experts” is one meta-expert for every sequence
of base experts. So a meta-expert is a vector e = 〈e1, ..., eT 〉 where et ∈ {1, ..., N} is a
base expert that is used at time t by the meta-expert. In other words, the meta-expert’s
prediction at time t will be a copy of whatever base expert et predicts. This seems very
inefficient as it creates an enormous number of meta-experts, but could have an advantage
that it will make it possible to implement the algorithm very efficiently. The downside is we
are including all meta-experts, including ones that have a very large number of switches. To
mitigate this, we therefore choose a prior over the meta-experts in a way that gives higher
weight to meta-experts with a smaller number of switches. We then apply Bayes algorithm
to the meta-experts, together with the prior.

We wish to create a prior π(e) over meta-experts e. This prior is just a probability
distribution. To define it, we describe a process for choosing a meta-expert e∗ randomly
(just as we earlier chose an expert i∗ randomly according to πi). Then the prior π(e) will

5

be Pr[e∗ = e]. Denote Pr[e∗ = e] = π(e). Then we use the following random process to
generate e∗ :

1. Pick e∗1 from a uniform distribution over base experts; Pr[e∗1 = i] = 1
N

2. Pr[e∗t+1 | e∗t] =

{
1− α if e∗t+1 = e∗t
α

N−1 else

This generative process defines a probability distribution over sequences e∗. We can
compute the probability explicitly:

Assume in e there are ke switches of experts. Then

Pr[e∗ = e] =
1

N
(1− α)T−ke−1

[
α

N − 1

]ke
Now we plug this in the regret bound and get that the regret to any switching expert with
k switches is:

− lnπ(e) = − ln

[
1

N

[
α

N − 1

]k
(1− α)T−k−1

]

= lnN + k ln

[
N − 1

α

]
− (T − k − 1) ln(1− α)

If we set α = k
T−1 , then we have:

− lnπ(e) = lnN + k ln

[
(N − 1)(T − 1)

k

]
− (T − k − 1) ln(1− k

T − 1
)

≈ lnN + k(lnN + lnT)

This shows a similar cost of about lnN + lnT for an additional switch of expert in the
sequence.

6

