COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #20
Scribe: Qinghua Liu April 17, 2019
1 Recap

In last lecture, we studied the density estimation problem. Specifically, we considered the
problem of the following form:

e First, we are given:

— A finite domain X with size N.
— A set of features fi, fo,..., fn: X > R.

e Second, we observe a set of samples x1,zo,..., 2z, iid. sampled from an unknown
distribution D over X.

e Our goal is to estimate the underlying distribution D from these samples.

We introduced two approaches to solve this problem.
The first one is motivated by the principle of maximum entropy.

q- = argr;gch(p), where P = {p: E,[f;] =E[f;], j € [n]}, (1)
where IE[fil = % Yoty fi(x;) is the empirical average of feature f;. Briefly speaking, we
want to find a distribution ¢* with maximum entropy such that the expectation of each
feature over ¢* is equal to its empirical average.

The second approach is to perform maximum likelihood estimation on the family of
Gibbs distributions (or exponential-family distributions).

¢ = argmaéizmq(xi),where Q=<q: q(xr) =exp Z)\jfj(a}) /Zx, AeR" 3 (2)
€L =1

where 75 is a normalization factor.

A key observation is that (1) and (2) are a pair of primal-dual problems. One can
reformulate one of them into the other using the method of Lagrange multipliers. To go
deeper, we have the following theorem.

Theorem 1. The following are equivalent:
e ¢* = argmax,cp H(p).
* ¢* =argmax, o Yo Ing(x;).
e ¢*cPNQ.
Furthermore, any one of these uniquely determines q*.

Theorem 1 bridges two seemingly different formulations elegantly. However, it says
nothing about how to solve them. The goal of this lecture is to introduce an algorithm based
on coordinate descent to solve problem (2), and by the equivalence of the two problems the
distribution we find will also be a solution of problem (1).

2 Algorithm

In this section, we will focus on the design of the algorithm.

2.1 A General Technique

First, note that maximizing log-likelihood is equivalent to minimizing the average log-loss,
so we can rewrite problem (2) as

. 1 &
min L):_m;hﬂp\(%)- (3)

For simplicity of notation, we further define

eg)\ (‘T)

o (z) = 7 where gx(z) =Y \;fi(=).
=1

Our goal is to find an iterative algorithm that can output a sequence {A¢}72; satisfying that
L(A¢) monotonically decreases with respect to ¢ and converges to infy L(X). Generally, the
algorithm is of the following form.

e Choose ;.
e Fort=1,23,...
— Compute A¢4q from Ag.

One attractive way to compute A¢11 is to find a A that minimizes L (A) — L (A;) or at least
makes this difference nonpositive. However, for many optimization problems, like this one,
it’s usually very difficult to optimize this quantity directly. To bypass this obstacle, we will
introduce a very general technique in the following sections. The key point of it is to find an
approximation (or upper bound) of L (A) — L (A;), which is usually much easier to optimize
than the original one, and try to minimize this approximation exactly.

2.2 Approximating the Difference of Loss

Before we dive into mathematical details, let’s make the following assumption without loss
of generality:

fi(x)€[0,1]]VzeXand j=1,2,...,n. (4)

To justify that this assumption can be made without loss of generality, it suffices to show
we can rescale each feature f; or add a constant to it arbitrarily without changing the
optimization domain Q. Recall that

Q={q: q(x) =exp(gr(x))/Zx, where gy € span{fi, fo,..., fu}}, (5)

where span{ fi, fa, ..., fn} is the linear functional space spanned by the f;’s. Since rescaling
the f;’s with nonzero constants will not change the linear space spanned by them, we justify
the rescaling operation. Since any constant added to gy will be offset by the normalization
factor Zy, we justify the shifting operation.

Now we are ready to derive an upper bound for L (A¢11) — L (A¢). In the following part,
we will fix ¢t and consider how to compute A1 from Ay. To simplify notation, we let A = A¢
and X' = Ay 1. Then the update on the #’th iteration is as follows:

e On the t’th iteration

— Choose an index j from {1,2,...,n}, and compute an update quantity «.

— Update \; (the j’th coordinate of A¢) by adding a and keep the other coordinates
unchanged, i.e.,

(6)

,_{)\k+a if k = 4,
{ —

A else.

A quick remark is that the algorithm is a special case of coordinate descent. Note that we
haven’t figured out how to choose j and «, so for now we just leave them as unspecified
variables. Besides, since we only add « to the j’th coordinate of A to get A’, we have
gy (z) = gx(z) + afj(x), which can be verified by using the definition of g.

Now, let’s look at how the loss changes after the ¢’th iteration if we adapt the updating
rule above.

AL=L(N) = L(\)

1 — 1
- ; In gy (z;) + . Z: In gx(x;) expanding L
1 n e‘g}\l(xl eg>\
=-— 1 1 by the definition of d gy
= n() Zn() y the definition of ¢y and gy
RS Zy
= Z (9a(@:) — g (2i)) +In Z—AA
=1
. N
= —aE[f;] +In ZA . by the definition of g and the updating rule (6)
A

Z
For the second term In Z—’:\’, we have

Zy _ 5 e (oala) + i)

expanding Zy, and using the updating rule (6)

Zx reX Zx
exp (ga(2))
=Y — T ep(af@)
zeX A
= Z aa(z) exp (af;(z)) by the definition of gy
TEX

= Eg, [exp (arf;(2))]
S Ega[14 (€% = 1) fj(2)]
=14 (e = DEg, [fj(2)],
where the inequality follows from the fact that for any z € [0,1], we have exp(az) <
1+ (exp(a) — 1)z.
Combining the two upper bounds, we get
AL < —alB[f;] +1n (1 + (¢% = DEqy [f5(2)]) (7)

Note that the right-hand side of (7) is a convex differentiable function of «, and its derivative
with respect to « is

B[£ ()]e”
L+ (e* = D Eq, [f(2)]

—E[f] + (8)

By setting (8) equal to zero, we get

I Elfj] 1-Eqlf)]
o=l (1—E[fj] Eqgx /] > ©

For this minimizing choice of «, the right-hand side of (7) is equal to
—RE(E[f;]|[Egx[£;]). (10)

2.3 Formal Definition of the Algorithm

Now, we are ready to give the formal definition of our algorithm for solving problem (2).
e Initialize A1 = 0.
e Fort=1,23,...

— Select j; = arg max; RE(E| FilllBagx, [£3])-

— Compute

—In E[f],]) 1- E(D\t [fjt]
%_1&—Mm] m@m1>' ()

— For k=1,2,...,n, update

Mg +op if k=g,
A = ’ 12
i1,k { Atk else. (12)

The analysis in the last subsection immediately gives us
Claim 1. For any t > 0,

L (A1) = L(Ae) < —max RE(E[f)||Eq, [£])- (13)

3 Convergence Analysis

The goal of this section is to show {gx, }?2; converges to ¢*, i.e., the unique global optimum
of problem (2) .

Theorem 2. Let p; = qx,. Then p; — ¢*.

The key point of our proof is to construct and utilize an auxiliary function satisfying
the following definition.

Definition 1. A function A : {probability distributions on X} — R is an auziliary function
if it has the following three properties

1. A s continuous.
2. L(Ae1) — L(Ae) < A(pe) < 0.

3. For any distribution p on X, if A(p) =0, then E[f;] = Ey[f;], 1=1,2,...,n.

4

Proof.
Step 1.
Let’s suppose such A exists and the distribution sequence {p;}$2; converges to some distri-
bution p. Since p; € Q, we have p € Q. Note that {L(A¢)}£2; is a monotonically decreasing
sequence lower bounded by 0, so L(Ai+1) — L(A¢) converges to zero. Using the second
property of the auxiliary function that A(p;) is sandwiched by L(Ai+1) — L(A¢) and 0, we
have A(p) converges to zero as well.

Furthermore, by the continuity of A, we have

Alp) = A(lim py) = lim A(p;) = 0.
The third property of the auxiliary function immediately gives us

E[fj] :Ep[fj]7]: 1727"'an>

which is equivalent to saying that p € P. Therefore, p € P N Q. Recall that Theorem 1
tells us P N Q only contains one element ¢*, which implies p = ¢*.

Step 2.

Let’s show

Alp) = — max RE(E[f;]][Ep ;)

is such an auxiliary function. First, it can be verified that A(p) is continuous and non-
positive. Besides, we have

Ap) =0 = Vj: REE[fIE,([f]) = 0.

Since the relative entropy is zero if and only if its arguments are equal, this completes the
proof. O

Remark 1. At the beginning of the proof, we assumed the sequence {p;} converges. This
assumption can be justified in the following way: first, note that all the p;’s are in the N -
dimensional simplex which is a compact set, so every subsequence of {p;} has a converging
subsubsequence; second, the proof of Theorem 2 tells us all the limit points of {p:} belong to
PNQ; finally, since PNQ contains only one element q¢*, we conclude that every subsequence
of {pt} has a converging subsubsequence whose limit point is ¢*, which can be shown to imply
that {p:} — q*.

4 Next: Online Log-loss

After working on a batch-version log-loss minimization problem, let’s turn to the online
setting. There are two different motivations for using log-loss in the online setting.

4.1 Log-loss in Online Learning

The first motivation is online learning. For instance, suppose we are betting on horse
racing and there are some experts providing predictions for each round. Particularly, the
predictions are given in the form of winning distributions over the horses. At the beginning
of each round, we can observe the predictions of all the experts and then combine them to
form our own prediction which is also a winning distribution ¢ over the horses. Then, we

will observe the winner z of this round, which will incur a loss equal to —Ing(x), where
q(x) is the probability that we assigned to the winner in this round. More generally, we
have

e Fort=1...T

— Each expert ¢ predicts a distribution p;; over X

Learner chooses distribution ¢q; over X.
— Observe z; € X.

— Incur loss — In g ().

Similar to the online learning problems we discussed before, our goal is to come up with an
algorithm whose performance is nearly as good as the best expert even when the data is
given in an adversarial way. So we seek a bound of the following form:

T T
- Z In g;(z;) < min (— Z lnpm(xt)) + small regret. (14)
' t=1

t=1

4.2 Log-loss in Coding Theory

Another motivation for using log-loss in the online setting arises from coding theory. Not
surprisingly, this is about the story saying that Alice wants to send Bob a message.

First, let’s start with the simplest setting. Suppose Alice wants to send Bob a single
English letter chosen from X = {a,b, ...}, and they both believe the probability of sending
x is p(z). Then they will use — log, p(z) bits to encode z, if they want to achieve minimum
average coding length H(z).

Now suppose Alice wants to send Bob a sequence of letters or a whole sentence. In this
case, our prediction for the next letter will heavily depend on the context, i.e., the letters
already sent. For example, if Bob has received "I am goin__", then he should predict the
next letter to be ’g’ with high probability. Therefore, in this setting, the main problem is
how to assign probability to each letter based on the letters already sent so that we can
use less bits to encode the same amount of information. Mathematically, it’s equivalent to
estimating the distribution of z; given $tfl = (r1,...,m-1).

The story of Alice and Bob gives us another perspective to understand log-loss for
the online setting. Suppose we have N coding methods, and let p;;(z;) be the estimated
conditional probability of x; conditioned on xﬁ_l provided by the i’th coding method. Also,
similar to the problems related with experts before, we do not know which coding method is
the best ahead of time. We want to find an algorithm to combine all these coding methods
such that its coding length is nearly as short as the best coding method. Then, we can
reinterpret (14) in the following way

) 23:1 (—log qi(x¢)) is the number of bits our algorithm uses to transmit the entire
message Ti,...,Tr.

° Ethl (—logpt,i(z¢)) is the number of bits the i’th coding method uses.

Thus, a bound like (14) tells us that for any message the algorithm will use almost as few
bits as the best of the given coding methods, since its coding length is bounded by the
coding length of the best coding method plus a small term.

	Recap
	Algorithm
	A General Technique
	Approximating the Difference of Loss
	Formal Definition of the Algorithm

	Convergence Analysis
	Next: Online Log-loss
	Log-loss in Online Learning
	Log-loss in Coding Theory

