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1 Introduction and Motivation

For the first part of the course we focused on classification learning, until last week where
we discussed regression problems and trying to estimate a real-valued number. Today we
turn to look at the question of how to model a probability distribution. In the past, we
have looked at problems where we assume a distribution (like in the PAC learning setting),
but we never decided to find what the distribution is. In fact, we went further and assumed
the results to be true over all distributions. In this new setting, we will get some samples x
from a probability distribution. x ∼ P and then given the samples, the goal is to estimate
P itself.

This model is of particular interest to statisticians and in general those who want to
model, for instance, characteristics of a human population, such as the distribution of
things like SAT scores, weights or heights of people and so on. It is also very useful in
Natural Language Processing (NLP) to build models over the distribution of what is being
said or written. Typically, as an example, we model the English sentences written by
people as a probability distribution. If we know the model, we can see which of the given
sentences are more probable than the others. This model can be especially useful in speech
recognition where, if we model English utterances as coming from some complex probability
distribution, and if we have some model of this distribution, then we can look for mistakes
and correct them using this model. For example, consider these two transcriptions of a
speech recognition system:

1. He sat on the chair.

2. He fat on the chair.

If we have a good model of the distribution of spoken sentences, then we can say that the first
sentence is more probable than the second, and therefore is the correct transcription. These
days, we are also seeing word suggestions and corrections while typing (google keyboard)
which are very robust and accurate most of the time, so it is a very useful thing to build
such a model.

Even for classification, these models can be useful. For instance, if we model the distri-
butions of men and women heights, and then are given the height of a random person that
should be classified as a man or women, we can predict the person is a man if and only if
the probability of being a man, according to the modeled distributions, is more than the
probability the person is a woman. This amounts to finding a threshold value, as in Fig. 1,
such that the probability a person above that height should be labelled man is greater than
.5 (assuming men are taller). Previously in the course, we would have just established such
a threshold value directly (from using the given data, making as few mistakes on the data
as possible), but here we would do so as a function of the distributions we compute.

The approach of modeling distributions, and thus how the data is generated, is more
statistical in nature and is often called a generative approach, while the alternative of



directly trying to find an accurate discriminator is said to be a discriminative approach.
The discriminative approach is more direct, not trying to model the distribution which is
not our goal, which is instead to be correct as often as possible. On the other hand, in
the generative modelling approach, we might make some more assumptions about the data
to get the right model, which may or may not be a bad thing. The advantage of this is
that we generally need less data for training, because of the assumptions we make. If the
assumptions we make are valid, we are able to get equally meaningful results using less
data.

Figure 1: Probability distribution of men and women in example

2 Principle of Maximum Likelihood

So the problem we are trying to solve here is as follows: we have an unknown distribution
P , and we also have m samples from that distribution sampled iid. Our aim now is to have
a good model for P using the m samples that we have. For simplicity, we assume that
the unknown distribution P is discrete (finite or countably infinite). This problem is called
Density Estimation or Probability Modelling.

As in the PAC model, let’s assume we have a set Q which is a set of distributions and
we want to find the distribution in Q that is as close to P as possible. Analogously, we can
imagine this to be similar to the hypothesis set we had earlier in PAC learning. Let’s see
an example here in the extreme case where we have two possible distributions that could
be generating P .

2.1 Example with distributions

We have the distributions q1 and q2 given in Fig. 2. Based on these two distributions, we
need to tell which of these two distributions are more likely to be the model that generated
these points. The answer here is simple: we see here that the points are more aligned
towards the distribution q2 than q1 and so it is more likely that the data model that could
have generated these points is q2. In a more general sense, we see that we can check each
candidate hypothesis distribution qi and find the probability of those points being generated
if qi were the actual distribution, and then select the distribution for which this probability
is highest.
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Figure 2: Sample Probability Distributions

Or more generally, if we suppose that q is the candidate distribution that generated the
data, then

Prq[x1, x2...xm] = q(x1)q(x2)....q(xm)

=
m∏
i=1

q(xi) (1)

where all points xi are assumed to be iid. This probability is called the likelihood of the
data under q. We then choose q which has the highest likelihood.

2.1.1 Distribution of Outcomes of Coin Flips

Let’s take the example of finding the distribution of outcome of coin flips, which essentially
means finding the bias of the coin. Each example x has two possible outcomes

X =

{
1, with probability p
0, with probability 1− p

}
The space of distributions Q is [0,1], because the bias can be anything between this range.
We gather some data (m samples). Suppose we flip the coin m times and get heads in h of
these flips. Another way of writing this is h =

∑m
i=1 xi. Then if P = q (true bias is equal

to q, which means that we are assuming the data to be generated from q), we can compute
the likelihood of the observed coin flips to be:

m∏
i=1

q(xi) =
m∏
i=1

{
q, when xi = 1
1− q, when xi = 0

}
which becomes

qh(1− q)m−h (2)

Our aim is to maximise this expression over q, to get q which maximizes Eq. (2). Hence,
the problem becomes

max
q

qh(1− q)m−h (3)
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We can solve this by differentiating this expression over q and equating to 0 to get the
optimal maximum-likelihood value of q. Solving, we get

q = h/m (4)

which is one of the obvious ways of estimating the bias, which says that the bias is equal
to the fraction of the number of heads in the samples that we collected.

We now formally state what the Principle of Maximum Likelihood is.
We solve for:

max
q∈Q

m∏
i=1

q(xi) ≡ max
q∈Q

log
m∏
i=1

q(xi)

≡ max
q∈Q

m∑
i=1

[log q(xi)]

≡ min
q∈Q

m∑
i=1

[− log q(xi)]

≡ min
q∈Q

1

m

m∑
i=1

[− log q(xi)]

Here we turned the problem of Maximum likelihood to a problem of minimization over
the seen samples. We have seen this kind of problem before. In classification, we were
minimizing the training error, which is the average error over all seen samples (zero-one
loss). When we were doing regression, we were minimizing the average of square loss.
Intuitively, loss depicts some kind of discrepancy between the model and the sample point.

We see that here, − log q(xi) is a measure of how poorly q fits xi, i.e., the discrepancy
between the model and data; we will call it the log loss function. This log loss function is
an especially important loss function. Here we will thus have the average of log loss over
the samples, which is the empirical risk for the log loss function of q. We also note that the
empirical risk should give some close estimate of the true expected loss.

When the true distribution is P , we can compute the true risk for model q under the
log loss to be:

TrueRisk = Ex∼P [− log q(x)]

= −
∑
x∈X

[P (x) log q(x)] (5)

where X denotes the entire space, which we here assume is finite (or at least countable) for
simplicity. This entire term is sometimes referred to as cross entropy.

=
∑
x∈X

[P (x) log

(
P (x)

q(x)

)
− P (x) logP (x)]

= RE(P ||q) +H(P ) (6)

where RE stands for relative entropy between P and q and H(P ) is the entropy of P .
Hence, the true risk (using log loss) can be written as the sum of relative entropy between
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P and q and the entropy of P . Note that H(P ) does not depend on q, so minimizing true
risk is equivalent to minimizing RE(P ||q) over Q which means that we are trying to find q
as close as possible to P , as relative entropy is always non-negative and is zero if and only
if both the distributions are the same.

3 Maximum Entropy Modelling of Distributions

We now consider a more practical setting. Consider the problem of modeling the habitat
of plant/animal species. Perhaps you are a researcher on an island who has a sample of
butterfly sightings, along with features associated with each sighting (for instance: altitude,
annual rainfall, average temperature, etc.), and you wish to model the population distribu-
tion of the butterfly on the island. We make several assumptions: that there exists a true
probability distribution D that would properly model the species, that the sightings are
being sampled from this same distribution D, and that it is possible to get every bit of data
for each feature for each spot on the map (our domain, X, although we first generally divide
the map into a grid of cells, so that X is finite as in our above assumption). More formally,
let |X| = N and consider x1, ..., xm ∼ D, and features f1, .., fn such that these features
are real-valued functions fj : X → R, where our goal is to estimate the true distribution
D. We begin by considering two different approaches. In the end, we show that both the
approaches have the same solution.

3.1 Principle of Maximum Entropy

It is difficult to estimate the true distribution, so the easiest step is to begin with taking
the average expectation of each of the features as an estimate of the true expectation for
the features.

The expected value of fj is

ED[fj ] = Ex∼D[fj(x)] (7)

whereas the empirical estimate from the samples is

Ê[fj ] =
1

m

m∑
i=1

fj(xi) (8)

Here D is unknown and we seek to find a distribution p that will be a good estimate of
D. We expect Ê[fj ] to be close to ED[fj ] ∀ j. So therefore, it makes sense that the same
should hold for our estimate p of D. This suggests that we should choose p to have the
property that Ep[fj ], the expectation of fj under the estimated distribution p, should be

close to Ê[fj ]. We will go further and require equality here. That is, we will seek to find a

distribution p for which Ep[fj ] = Ê[fj ] ∀j ∈ {1, . . . , n}.
In the above expression, the left half of the equality denotes the expectation of feature

fj under distribution p and the right half of the equality denotes the empirical average that
we see from the samples we observe. In terms of our example, for instance, if we only have
found the butterfly at high altitudes, we find a p which predicts the same. We can rewrite
our constraints on p to say that we require that p belong to the set P where

P = {p | Ep[fj ] = Ê[fj ] ∀j}
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Another point to note is that the number of distributions that will satisfy these prop-
erties mentioned could be large and somehow we need to select just one. Given no prior
beliefs and no observations, we would just guess that the most intuitive guess would be the
uniform distribution, so maybe it would make sense to choose the distribution which is clos-
est to the uniform distribution, among all distributions which satisfy the above constraints
of P. (If we have reason to choose some other distribution as the default, then the method
we are describing can be generalized for that case as well, but we will only use uniform
distribution for this purpose.) Hence, among all distributions p which satisfy:

Ep[fj ] = Ê[fj ] ∀j (9)

we seek to find the one which is closest to uniform, that is, which minimizes RE(p||unif),
where unif denotes the uniform distribution over X.

The relative entropy can be written down as:∑
x∈X

p(x) log

(
p(x)

1/N

)
(10)

which can be reduced to
logN +

∑
x∈X

p(x) log p(x) (11)

The second term here is the negative of the entropy, which becomes:

logN −H(p) (12)

Now the minimization problem turns into a maximization problem, namely

arg max
p∈P

H(p) (13)

where P = {p | Ep[fj ] = Ê[fj ] ∀j}
In general, we can do better by combining the features (higher order features) and do

better by creating a new set of features, for instance, by taking products or squares of
features which is generally helpful in such problems.

One more interesting thing to note is that in this setting, we are not considering any
proximity between the points as a factor in our decision, though this could help. Biologists
though have a different view — they want to individually validate findings separately. We
can add these extra feature vectors f which would provide location information where the
butterfly was found as useful features into our model if we want.

3.2 Using Gibbs Distribution / Exponential Family Distribution

In the previous subsection, we said that we needed to find p ∈ P which maximizes H(p).
We did not say anything about the structure of the distribution. Here we instead assume
that distribution we are looking for has a particular form. Perhaps it would be reasonable
to assume that it is linear in each feature, except then we will end up with ill-defined prob-
abilities (such as negative values). Thus, we instead use a linear function in the exponent,
and re-scale accordingly. In this case, we use

q(x) = exp

 n∑
j=1

λjfj(x)

 /Zλ (14)
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for some setting of the real-valued parameters 〈λ1, . . . , λn〉 where, as stated, we use an
exponential to avoid negative values, and we normalize with Zλ to make it a probability
distribution. This type of distribution is referred to as a Gibbs distribution or exponential-
family distribution.

Let Q be all the distributions that have the above form. Now, we will use the principle
of maximum likelihood: we want to find q such that it maximizes the log loss. Hence,
arg maxq∈Q

∑m
i=1 log[q(xi)].

We quickly note that such a maximum may not be realised by a distribution q in Q, and
therefore, the maximum might not exist. Therefore, we also allow the distribution q to be
in the closure of Q, written Q, which includes all limits of sequences in Q. (For instance,
the set A = [0, 1) has no maximum, but if we take its closure A = [0, 1], it now has a
maximum, exactly equal to 1). So the problem becomes arg maxq∈Q

∑m
i=1 log[q(xi)]. (We

also note here that sup does not work as we have to do arg max and not max. In the latter
case, when we do not have to extract the value out of the set, sup would have worked as
well.)

4 Equivalence and Uniqueness Results

In previous sections, we discussed two methods. We will summarise them here and then
discuss the implications of these results.

Theorem 1 The following are equivalent:

1. q∗ = arg maxp∈P H(p)

2. q∗ = arg maxq∈Q
∑m

i=1 log q(xi)

3. q∗ ∈ P ∩Q

Furthermore, any of these determine q∗ uniquely.

We won’t prove these results in detail. We will just give a sketch to provide intuition below.
We notice that condition 1 and condition 2 imply that if q∗ is the maximum entropy

solution subject to the constraints mentioned in condition 1, then the very same q∗ distri-
bution is also the maximum likelihood solution amongst all Gibbs distributions and also
vice versa.

We see that condition 3 says that it is both a necessary and sufficient condition to find
an element in the intersection of P and Q, and that this element is unique and is always a
solution to both. The equivalence of the two approaches comes from them being duals of
each other, as we will see the solution sketch below.

4.1 Sketch of Equivalence of Condition 1 and Condition 2

We see that condition 1 and condition 2 are duals of each other. We talked about duality
in support vector machines between optimization problems. To see how, we use Lagrange
multipliers to convert one optimization problem into the other.

We will start with condition 1, which we assume is our primal problem which is q∗ =
arg maxp∈P H(p). The Lagrangian is formed as follows:
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L =
∑
x∈X

q(x) log q(x) +
n∑
j=1

λj

(
Ê(fj)−

∑
x∈X

q(x)fj(x)

)
+ γ

(∑
x∈X

q(x)− 1

)
(15)

The first term is the primal objective, the second term is used as:

Ê[fj ]− Eq[fj ] = 0 ∀j (16)

which can be written as

Ê[fj ]−
∑
x∈X

q(x)fj(x) = 0 ∀j (17)

In this setting, the λj ’s and γ are the Lagrange multipliers. The solution to this problem
is a sadde point solution. As the problem now is to minimize L in terms of q but maximise
L in terms of the λj ’s and γ. Taking derivative of L with respect q(x), dL

dq(x) = 0, we get

1 + log q(x)−
n∑
j=1

λjfj(x) + γ = 0 (18)

Solving this gives,

q(x) = exp

 n∑
j=1

λjfj(x)− γ − 1

 (19)

= exp

 n∑
j=1

λjfj(x))/ exp(γ + 1)

 (20)

= exp

 n∑
j=1

λjfj(x)

 /Zλ (21)

where exp(γ + 1) acts as the normalization factor Zλ. We see that this gives back the
exponential family distribution and thus q has to be in the set Q. We (partially) plug this
value back into L and maximize with respect to the Lagrangian variables. We get:

L =
∑
x∈X

q(x)

 n∑
j=1

λjfj(x)− logZλ

+
n∑
j=1

λj(Ê[fj ])−
∑
x∈X

q(x)
n∑
j=1

λjfj(x)

 (22)

=
1

m

∑
j

(
λj
∑
i

fj(xi)

)
− logZλ (23)

=
1

m

∑
i

∑
j

λjfj(xi)

− logZλ (24)

=
1

m

∑
i

[log q(xi)] (25)

using Eq. (21). This is the log likelihood, or the negative empirical risk. Thus, at the
solution, which is at a saddle point, the distribution will be a Gibbs distribution and it will
have maximum likelihood/minimum log loss. This is exactly condition 2.
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