
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #18
Scribe: Ksenia Sokolova April 10, 2019

Last time we started the topic of online linear regression. In this lecture we look at the
Widrow-Hoff algorithm, the motivation behind it, and prove the regret bound. We then
explore the connection of online and batch learning algorithms.

1 Online Linear Regression

In regression we are generally trying to predict real valued labels. For example, predicting
whether or not it will rain can be treated as a classification problem, but really we want to
predict the probability of rain, a regression problem.

Recall that in the online linear regression setting the learning algorithm is maintaining
a weight vector wt, and learning happens in T rounds. On each round the learner gets
an example, makes a prediction using wt, observes the actual outcome, computes loss and
updates the weight vector:

• Initialize w1

• For t = 1, ..., T :

– Observe xt ∈ R
– Predict ŷt = wt · xt
– Observe yt ∈ R
– Calculate loss (ŷt − yt)2

– Update wt+1

Additionally, define the cumulative loss of the algorithm as the cumulative sum of the
losses for every round: LA =

∑T
t=1(ŷt − yt)

2. The loss for the single fixed vector u is

Lu =
∑T

t=1(u · xt − yt)2. We want to bound the loss of the algorithm in terms of the loss
of the best vector u:

LA ≤ min
u
Lu + [small number]

To finish the algorithm outline above, we need to provide initialization information for
w1 and the update rule:

• Initialize w1 = 0

• For t = 1, ..., T :

– Observe xt ∈ R
– Predict ŷt = wt · xt
– Observe yt ∈ R
– Calculate loss (ŷt − yt)2

– Update wt+1 = wt − η(wt · xt − yt)xt
Here η is the leaning rate parameter, such that 0 < η < 1. This algorithm is called

Widrow-Hoff (WH), or sometimes Least Mean Squares (LMS).

1.1 Where does the update rule come from?

Motivation 1: Form of Gradient Descent
The first approach to explaining the update rule would be to consider our goal of mini-

mizing the loss function:

loss of w on (x, y) = (w · x− y)2 = L(w,x, y)

Recall that the gradient of a continuous and differentiable function is the direction in
which it increases the fastest. So the natural way to decrease the function is to take steps
in the direction of the negative gradient. The gradient of the loss function is:

∇wL =

∂L/∂w1

∂L/∂w2
...

∂L/∂wn

 = 2(w · x− y)x

Thus, the update rule is wt+1 = wt− 1
2η(∇wtL(wt,xt, yt)). Unfolding it from the inside,

wt is where we are in the process; xt is the new example; η∇wtL(wt,xt, yt) is the step; η is
the size of the step and 1/2 is just a factor used to cancel 2 in the gradient.

Motivation 2: what is the goal of each step?
In the algorithm, wt encapsulates everything that was learned so far. So going forward,

we want to minimize loss on the example just observed and at the same time keep the
progress achieved. Mathematically, we want to:

• Minimize L(wt+1,xt, yt): min(wt+1 · xt − yt)2

• Stay close to wt: small ||wt+1 −wt||22

Since we have two items to minimize, we can combine them into a problem of minimizing
the weighted sum:

min η(wt+1 · xt − yt)2 + ||wt+1 −wt||22
The solution to this minimization problem turns out to be wt+1 = wt−η(wt+1·xt−yt)xt.

This is almost the value we want, but both sides of the expression depend on wt+1. However,
in this situation it is appropriate to approximate wt+1 ≈ wt, and we get the update rule.

2 Analysis

Theorem 1. If for all rounds t, ||xt||2 ≤ 1, then

LWH ≤ min
u∈Rn

(Lu

1− η
+
||u||22
η

)
where LWH is the cumulative loss of the Widrow-Hoff algorithm.

2

Note:

• Proving the upper bound containing minimum is equivalent to stating that the bound
it true for all values of u. In other words, it will be enough to show that:

∀u, LWH ≤
Lu

1− η
+
||u||22
η

To get a better insight on the meaning of the expression, divide both sides by T :

LWH

T
≤ 1

1− η
Lu

T
+
||u||22
ηT

For a small η, 1 − η → 1. Additionally, as T → ∞,
||u||22
ηT → 0. Thus, under these

conditions, the rate at which Widrow-Hoff suffers loss approaches the rate at which
Lu does.

• The proof that follows uses the potential function. To get a better intuitive under-
standing of what happens, note that potential is measuring progress in some way or
how much loss the algorithm can afford to suffer while still achieving a particular
regret bound. The kind of potential used before usually measured similarity between
the learning algorithm’s weight vector wt and whatever it was compared to (here u).
Since both are just vectors in Euclidean space, Φt = ||wt − u||22 can be used.

Proof. Choose any u ∈ Rn. Decide on the potential function to use. As discussed above,
define potential at round t as Φt = ||wt − u||22.

Establish some notation for the proof:

• `t = ŷt − yt = wt · xt − yt, which means that `2t is loss of Widrow-Hoff at round t

• gt = u · xt − yt, , which means that g2t is loss of weight vector u at round t

• ∆t = η(w · xt − yt)xt = η`txt, and so wt+1 = wt −∆t

Claim

Φt+1 − Φt ≤ −η`2t +
η

1− η
g2t

Note: consider the expression above. The first element is the weighted measure of loss
of Widrow-Hoff at round t. The second element is related to the loss that u suffers. Thus,
this can be thought of as a measure of how much loss the learner can incur to not fall behind
u too much.

Proof of claim
First, rewrite the potentials using the defined potential function, plug in the expression

for wt+1 as described above and expand the first term:

Φt+1 − Φt = ||wt+1 − u||22 − ||wt − u||22
= ||(wt − u)−∆t||22 − ||wt − u||22
= ||∆t||2 − 2(wt − u) ·∆t + ||wt − u||22 − ||wt − u||22
= ||∆t||2 − 2(wt − u) ·∆t

3

Consider the elements in the expression above:

• ||∆t||2 = η2`2t ||xt||2, where ||xt||2 ≤ 1.

• 2(wt−u) ·∆t = 2η`txt ·(wt−u). Note that xt ·(wt−u) = (wt ·xt−yt)−(u ·xt−y) =
`t − gt.

Therefore, returning to the expression,

Φt+1 − Φt ≤ η2`2t − 2η`t(`t − gt) = (η2 − 2η)`2t + 2η`tgt

To simplify the above expression, use the inequality ab ≤ a2+b2

2 , with a = gt√
1−η and

b = `t
√

1− η:

Φt+1 − Φt ≤ (η2 − 2η)`2t + η
(g2t

1− η
+ `2t (1− η)

)
≤ −η`2t +

η

1− η
g2t

Finishing proof of Theorem 1
We will now use the claim to prove the theorem. First, note that ΦT+1−Φ1 is the total

change in the potential. Further note that since w1 = 0, ||u||22 = ||w1 − u||22 = Φ1. Thus,

−||u||22 = −Φ1 ≤ ΦT+1 − Φ1

where the last inequality is true since ΦT+1 ≥ 0 as a norm. Then, do some algebra and use
the claim:

ΦT+1 − Φ1 = (ΦT+1 − ΦT) + (ΦT − ΦT−1) + · · ·+ (Φ2 − Φ1)

=

T∑
t=1

(Φt+1 − Φt)

≤
T∑
t=1

(−η`2t +
η

1− η
g2t)

Distribute the sum:

= −η
T∑
t=1

`2t +
η

1− η

T∑
t=1

g2t

Observe that the cumulative loss is the sum of losses every round:

= −ηLWH +
η

1− η
Lu

Solving for LWH we get exactly the bound we wanted to prove.

4

2.1 Families of Online Algorithms

In the previous section we minimized

η(loss of wt+1 on xt, yt) + (distance between wt+1,wt)

In particular, we chose the square loss function for the first part, and Euclidean distance
for the second. But we have the freedom to choose other functions. For example, for any
loss function L (still using the Euclidean distance) the update rule is:

wt+1 = wt − η∇wL(wt,xt, y)

Another interesting variation would be to use the relative entropy instead of the Eu-
clidean distance: RE(wt||wt+1). It is important to note that w then needs to be a prob-
ability distribution: non-negative and with components that sum to 1. The new update
rule:

∀i, wt+1,i =
wt,i
Zt
· exp

(
−η∂L(wt,xt, yt)

∂wi

)
This is called the Exponentiated Gradient Algorithm (EG). Note that the update rule

is multiplicative, and not additive (as it was before). The analysis will be based on the
relative entropy, but we are not going to cover it in detail.

The following table provides a summary of the additive and multiplicative update rules
we have encountered thus far:

Additive Multiplicative

SVM AdaBoost
Perceptron Winnow/Weighted Majority Algorithm (WMA)

Gradient Descent (GD) Exponentiated Gradient (EG)

3 Connecting Online and Batch learning

Consider the two types of learning:
Online learning: uses one example at a time and does not make independence as-

sumptions about the data.
Batch learning: uses the whole set of random data offline.

Intuitively, online learning seems more powerful since it does not make any randomness
assumptions. In this section we will look at how we can take an online learning algorithm
and apply it to the batch setting, and how the analysis carries over. We will do that through
an example in the linear regression setting.

We are given S = 〈(x1, y1), ..., (xm, ym)〉, where (xi, yi) ∼ D and are iid. We then get
a test point (x, y) ∼ D. The goal is to find v with low risk (expected loss), where risk is
defined to be

Rv = E(x,y)∼D[(v · x− y)2]

and the minimization goal can be expressed as boundingRv: Rv ≤ minuRu+[something small]
Conveniently, we can use the WH algorithm for which we already have done the analysis:

5

1. Run WH for T = m rounds on the examples (x1, y1), · · · , (xm, ym) in exactly the
order given in S. Calculate w1, ...,wm for each round

2. Output v = 1
m

∑m
t=1 wt

Note that in the proposed algorithm we are using the average of the weight vectors, and
not the last produced w. We then claim that the following theorem holds:

Theorem 2.

ES [Rv] ≤ min
u∈Rn

[Ru

1− η
+
||u||22
ηm

]
where the expectation is taken over the random choice of sample S.

Note: previously, we proved high probability bounds, where we said that the statement
is true with high probability. Here, we are doing it over the expected value.

Proof. Fix any vector u ∈ Rn. Let (x, y) be a random test example from D. The expecta-
tions used in the proof are with respect to the random sample S and the random test point
(x, y).

The proof will consist of 3 observations.

Observation 1:
Statement : (v · x− y)2 ≤ 1

m

∑m
t=1(wt · x− y)2

Proof :

(v · x− y)2 =

(
1

m

m∑
t=1

(wt · x− y)

)2

By Jensen’s inequality and convexity of f(z) = z2:

≤ 1

m

m∑
t=1

(wt · x− y)2

Observation 2:
Statement : E

[
(u · xt − yt)2

]
= E

[
(u · x− y)2

]
Proof : (xt, yt) and (x, y) are from the same distribution.

Observation 3:
Statement : E

[
(wt · xt − yt)2

]
= E

[
(wt · x− y)2

]
Proof : wt depends on the t− 1 observations and therefore is independent from (xt, yt)

and (x, y). In other words, if the dataset S and the test point are generated sequentially, wt

is already determined by the first t−1 examples before either (xt, yt) or (x, y) are observed.
Therefore, even if we condition on wt, (xt, yt) or (x, y) remain identically distributed. And
lastly, (xt, yt) and (x, y) are from the same distribution.

Putting it all together:

6

ES [Rv] = E
[
(v · x− y)2

]
≤ E

[1

m

m∑
t=1

(wt · x− y)2
]

=
1

m

[m∑
t=1

E(wt · x− y)2
]

by definition of risk, using the first observation and linearity of expectation.
Use the third observation:

=
1

m

m∑
t=1

E
[
(wt · xt − yt)2

]
By linearity of expectation:

=
1

m
E
[m∑
t=1

(wt · xt − yt)2
]

Note that now inside of the expected value we have the cumulative loss of Widrow-Hoff,
and we proved the upper bound for it:

≤ 1

m
E
[∑m

t=1(u · xt − yt)2

1− η
+
||u||22
η

]
Use linearity of expectation and pull out the constants:

=
1

m

∑m
t=1 E(u · xt − yt)2

1− η
+
||u||22
mη

Finally, use observation 2 and definition of risk of u:

=
1

m

∑m
t=1 E(u · x− y)2

1− η
+
||u||22
mη

=
Ru

1− η
+
||u||22
mη

7

