
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #17
Scribe: Tim Alberdingk Thijm April 8, 2019

1 Introduction

Last time, we looked at the perceptron and winnow algorithms. Note that these algorithms
are quite simple while not making stochastic assumptions!

Between the two algorithms, we noted that winnow is better than perceptron in certain
cases, for instance, when N (the number of experts) is large and we assume the label is a
majority vote of some “subcommittee” of k experts. For this lecture, we’ll start by analyzing
winnow.

2 Analysis of the Winnow Algorithm

All we need to do going from our analysis of perceptron to winnow is change the vector
norms. This parallels the differences in norms between boosting and SVMs.

2.1 Assumptions for Winnow

• We make a mistake every round.

• ∀t : ‖xt‖∞ ≤ 1

• ∃δ,u ∈ RN : ‖u‖1 = 1, ∀i : ui ≥ 0,∀t : yt(u · xt) ≥ δ > 0 (note that we will later get
rid of the assumption that the elements of u are non-negative)

2.2 Bounding winnow mistakes

Given these assumptions, we can prove the following bound on the number of mistakes
made by winnow.

Theorem 2.1. The number of mistakes for winnow is at most:

lnN

ηδ + ln
(

2
eη+e−η

)
When η = 1

2 ln (1+δ1−δ), the number of mistakes is at most:

2 lnN

δ2

As an example, let yt be the majority vote of k out of N experts. Let xt be some vector
whose elements are all +1 or −1, here representing the predictions of N experts. Then
‖xt‖∞ ≤ 1. Let u be some vector representing the majority vote of k of the experts, that
is, its elements are all 0 or 1

k , where there are k elements equal to 1
k so that ‖u‖1 = 1. For

all t, yt(u · xt) ≥ 1
k . Then δ = 1

k .
Then the number of mistakes winnow makes is at most 2k2 lnN .

Proof. The basic idea behind this type of proof is to pick a quantity to focus on and derive
upper and lower bounds for it. As with perceptron, we will use a potential function Φt.

Let Φt = RE (u ‖wt). This is so we can measure the distance between vectors like the
distance between probability distributions. Recall that:

RE (p ‖ q) =
∑
i

pi ln

(
pi
qi

)
We want to show that Φt always decreases significantly and never becomes negative,

which will give us a bound on the number of mistakes.
Let’s take a look at Φt+1 − Φt.

Φt+1 − Φt =
∑
i

ui ln

(
ui

wt+1,i

)
−
∑
i

ui ln

(
ui
wt,i

)
=
∑
i

ui ln (ui)−
∑
i

ui ln (wt+1,i)−
∑
i

ui ln (ui) +
∑
i

ui ln (wt,i)

=
∑
i

ui ln

(
wt,i
wt+1,i

)
Now we have an expression which is related to the update that got us from wt,i to wt+1,i.

Φt+1 − Φt =
∑
i

ui ln

(
Zt

exp (ηytxt,i)

)
=
∑
i

ui ln (Zt)−
∑
i

ui ln (exp (ηytxt,i))

= ln (Zt)−
∑
i

ui(ηytxt,i) since
∑
i

ui = 1

= ln (Zt)− ηyt(u · xt)
≤ ln (Zt)− ηδ yt(u · xt) ≥ δ

We pause here to compute Zt, the normalization constant of our wi variables. For
readability, as we are only looking at a particular t, we omit the t subscripts.

Z =
∑
i

wie
ηyxi

Note that y ∈ {−1,+1} and −1 ≤ xi ≤ 1, so their product z is also between −1 and 1.

We can then upper bound eηz using a linear equation eη+e−η

2 + eη−e−η
2 z (see Figure 1).

Z ≤
∑
i

wi

[
eη + e−η

2
+
eη − e−η

2
yxi

]
=
eη + e−η

2

∑
i

wi +
eη − e−η

2
y
∑
i

(wixi) distribute inner terms

=
eη + e−η

2
+
eη − e−η

2
y(w · x) since

∑
i

wi = 1

≤ eη + e−η

2
see explanation (∗) below

2

−1 −0.5 0.5 1

z

e(ηz)

eη+e−η

2 + eη−e−η
2 z

Figure 1: Graph of eηz and its bounding linear function

(∗): We’ve assumed a mistake every round, so y(w · x) ≤ 0 while eη−e−η
2 ≥ 0. Hence,

their product is non-positive.
Returning to Φt+1 − Φt:

Φt+1 − Φt ≤ ln

(
eη + e−η

2

)
− ηδ = −C

Our potential is then going down by C each round.
Now we note that Φ1 = RE (u ‖w1) =

∑
i ui ln (uiN) ≤

∑
i ui lnN = lnN .

From the initial potential Φ1 ≤ lnN , the potential then decreases by at least C every
round, and, being a relative entropy, is never negative. Therefore T ≤ lnN

C . Minimizing the

bound over η, we obtain η = 1
2 ln

(
1+δ
1−δ

)
which gives:

C = RE

(
1

2
− δ

2
‖ 1

2

)
≥ 2

(
δ

2

)2

Plugging this into T gives the bound stated in the theorem.

We can get rid of the assumption that all of our ui elements are non-negative by mapping
our N -dimensional vectors to 2N dimensions. We construct a vector x′t where elements
0, . . . , N correspond to x and elements N + 1, . . . , 2N correspond to −x. We construct a
vector u′ from u as follows:

1. If element ui ≥ 0, u′i = ui and u′i+N = 0.

2. If element ui < 0, u′i = 0 and u′i+N = −ui.

This ensures that we have the following properties:

• x′ · u′ = u · x, which means now we can assume ∀i : u′i ≥ 0

3

• ‖x′‖∞ = ‖x‖∞

• ‖u′‖1 = ‖u‖1
While N has been replaced by 2N , this increase is negligible since our bounds are

logarithmic in N .

3 Regression

We’ve been focussing in the classes so far on classification. For these problems, our goal
has been minimizing the number of mistakes our algorithms make.

Now we want to look at a range of learning problems beyond classification.

3.1 Predicting the Weather

For example, what if we wanted to predict the weather? Let’s say we have a few meteoro-
logical websites which give us predictions (our experts, but now giving percentages!). How
would we figure out which of these experts made the better prediction that it will rain?
Suppose the National Weather Service predicts a 50% chance of rain, and AccuWeather
predicts a 70% chance. If it did in fact rain, who made the better prediction? To answer
that question, we’d need to determine the actual probability of it raining, which we can
never observe directly.

Let x be today’s weather conditions. Let y = 1 if it will rain tomorrow, and y = 0
otherwise. Then let’s say that (x, y) are sampled from some distribution D, ignoring the
fact that weather is not at all i.i.d.

In that case, we want to estimate Pr[y = 1|x] = p(x) = E[y|x]. Using expectation here
is somewhat more general: for instance, we can use the same set up when the problem is to
predict the expected inches of rain, where y now represents inches of rainfall.

Problems of this form are called regression problems.

3.2 Risk Minimization

Let’s say we have our 2 experts who give us hypotheses h1(x) and h2(x) respectively. We
want to find out who is closer to p(x) given only observations of y.

To do so, we use a loss function, which can be used in general to measure how well
a prediction fits an observed outcome. We were actually using a loss function during clas-
sification of the form 1{h(x) 6= y}. Here, we are instead using square or quadratic loss:
(h(x)− y)2. We want to use the loss function to assign a score to every prediction and pick
the best one.

We generally are interested in minimizing the expected loss, which we call the risk or
true risk, and define it as:

E(x,y)∼D[(h(x)− y)2]

Our goal is to pick h which has the lowest risk.
Which predictor h minimizes the square loss? Let’s say we fix a particular x and have

y ∈ {0, 1}. Then for brevity we write p for p(x) and h for h(x). Then Ey[(h − y)2] =
p(h−1)2 +(1−p)h2. Taking the derivative of this term with respect to h and setting it to 0
gives us h = p. This tells us that the risk is minimized when h = p, and gives us estimates
over p.

More generally, we can prove the following theorem.

4

Theorem 3.1. For all h,

Ex[(h(x)− p(x))2] = E(x,y)∼D[(h(x)− y)2]− E(x,y)∼D[(p(x)− y)2]

The middle term is the risk, and the term on the left is a kind of measure of how close
h(x) is on average to p(x), something we can never measure. Since the term on the right is
constant with respect to h, this theorem shows that minimizing the risk, which is something
that can be done approximately from data, is equivalent to minimizing the term on the left,
even though it involves quantities p(x) that can never be observed directly. Additionally, it
is a kind of expected variance.

Proof. Recall our earlier use of marginalization to state:

Ex,y[. . .] = Ex[Ey|x[. . .]]

This means that it is sufficient to prove the theorem with x fixed, and then to simply take
expectation on both sides with respect to x. Fix x and write h for h(x), p for p(x). Note
that p = E[y].

The left-hand side is E[(h− p)2] = (h− p)2, since h and p are constant.
The right-hand side can be expanded as follows:

E[(h− y)2]− E[(p− y)2] = E[h2 − 2hy + y2]− E[p2 − 2py + y2]

= h2 − 2hE[y]− p2 + 2pE[y]

= h2 − 2hp+ p2 E[y] = p

= (h− p)2

Both sides match and the theorem holds.

To approximately minimize the true risk Ex,y∼D[(h(x) − y)2], if we have a sample
(x1, y1), . . . , (xm, ym), then we can simply minimize the average risk on the training set,
called the empirical risk:

Ê[(h(x)− y)2] =
1

m

m∑
i=1

(h(xi)− yi)2

This is called empirical risk minimization.
Write Lh(x, y) = (h(x)− y)2 for our loss function. To prove that this works, we would

need to prove that E[Lh] ≈ Ê[Lh] ∀h ∈ H (cf. uniform convergence results).
One approach to obtain these bounds on empirical versus true risk is to take what

we’ve worked on using Chernoff bounds, VC-dimension, growth functions and so on, and
generalize it to regression. We’re instead going to focus on using online learning algorithms.

3.3 Linear Regression

Let’s start by asking what specific form h(x) can take. One typical case is where we are
working with x ∈ RN and h(x) = w · x. Then we want to find w that minimizes the sum
of squared errors 1

m

∑
i(w · xi − yi)2.

This is known as linear regression.
We’ll focus on the online version of linear regression.

5

Figure 2: Online linear regression template

1: initialize w1

2: for t← 1, . . . , T do
3: observe xt ∈ RN
4: predict ŷt = wt · xt
5: observe yt ∈ R
6: loss ← (ŷt − yt)2
7: update wt

8: end for

Here we do not need to assume that the data is random and coming from a distribution
D! Although intended for an online setting, such methods often are useful in batch settings
as well.

Instead of a total number of mistakes (which was just a kind of loss), we will define the
algorithm’s total loss LA for square loss as follows:

LA =
T∑
t=1

(ŷt − yt)2

We also will want to know what loss would be suffered if we always used some particular
u:

Lu =

T∑
t=1

(u · xt − yt)2

Like before, we want:

LA ≤ min
u
Lu + (some small regret)

We’ll leave coming up with how to predict ŷt and update wt for next time.

6

