
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #16
Scribe: Arnold K Mong April 3, 2019

1 Analysis of RWMA

General Framework:
N= number of experts
For t = 1, . . . , T

Observe ξi for i ∈ {1, 2, ..., N}
Predict ŷ ∈ {0, 1}
Observe y ∈ {0, 1}

Recap: In lecture #15, we covered the weighted majority algorithm (WMA) and the
randomized weighted majority algorithm (RWMA). We will finish the analysis of RWMA.

New Notation:
LA = E[# of mistakes of learner]
Li = # of mistakes of expert i

Theorem: Using RWMA,

LA ≤ aβ min
i
Li + cβ ln(N)

where aβ =
ln(1

β
)

1−β and cβ = 1
1−β .

Corollary: Given mini Li ≤ K, we can set β for RWMA such that

LA ≤ min
i
Li +

√
2K ln(N) + ln(N)

1.1 Intermediate WMA

As mentioned in lecture #15, there are algorithms which make predictions that are between
those of the WMA and RWMA algorithms, and which can achieve better mistake bounds.
While not demonstrated in lecture, we can show

Theorem: It is possible to find a “middle-ground” between the WMA and RWMA
algorithms as to achieve the following mistake bound:

LA ≤ aβ min
i
Li + cβ ln(N)

where aβ =
ln(1

β
)

2 ln(2
1+β

)
and cβ = 1

2 ln(2
1+β

)
.

Corollary: Given mini Li ≤ K, we can set β for the algorithm above such that

LA ≤ min
i
Li +

√
K ln(N) +

ln(N)

2

Extension: Usually, we can guarantee that K ≤ T
2 . For example, if one expert always

predicts 0 and the other always predicts 1, then one or the other will be right at least half
the time (making fewer than T

2 mistakes). Thus, we can (almost) without loss of generality
assume K ≤ T

2 . Then the bound above reads:

LA ≤ min
i
Li +

√
T ln(N)

2
+

lg(N)

2

Definition: The difference between LA and mini Li is called cumulative regret.

Another interpretation of the bound above pertains to the mistake rate. Dividing the
inequality above by T reads:

LA
T
≤ mini Li

T
+

√
ln(N)

2T
+

lg(N)

2T

Definition: The difference between LA
T and mini Li

T is called average regret.

In the result above, it is clear that as T →∞, the average regret → 0, so the learner’s
mistake rate approaches the mistake rate of the best expert. This is called no-regret learning.

1.2 Lower bound on LA

The mistake bound for the intermediate algorithm is essentially tight for large T for the
dominant term of the regret. Currently, we only have the upper bound:

LA ≤ min
i
Li +

√
T ln(N)

2
+

lg(N)

2

We will now prove a lower bound on the number of mistakes which nearly matches the
upper bound, even up to the constants of the dominant term.

Theorem: For any learning algorithm A, there exists an adversary (who chooses ξi and
y) such that

LA ' min
i
Li +

√
T ln(N)

2

Proof: For any A, we can construct the adversary which makes every expert predict 0 with
50% chance and 1 with 50% chance independently. Similarly, the outcomes yt are 0 and
1 as the result of a coin flip. Then, since the outcomes and expert predictions are purely
random, any algorithm A and each of the experts is expected to have 50% accuracy. With
T rounds, taking the expectation over the random outcomes yt and expert predictions ξi,t,

E[LA] =
T

2
∀i, E[Li] =

T

2

However, from random variations we expect the best expert to do better than just T
2 . It

can be shown that

E[min
i
Li] ≈

T

2
−
√
T ln(N)

2

2

which implies

E[LA] ≈ E[min
i
Li] +

√
T ln(N)

2

So, the adversary can select some ξi, y for each round to create a scenario where

 LA ' min
i
Li +

√
T ln(N)

2

2 Predictions Using Groups of Experts

In the previous examples of online learning, the mistake bounds we found relate the num-
ber of mistakes the learner makes to the number of mistakes the single best expert makes.
These bounds are useful under the assumption that there is at least one expert who achieves
high accuracy alone. However, one could imagine a scenario where no single expert is very
good, but some subset of the experts together make very accurate predictions. We now
present a general algorithm skeleton and two specific algorithms for this scenario.

Change of Setting:
Let xt be a vector representing the predictions of the N experts on round t. In this special
case, xt ∈ {−1,+1}N . But to be more general, we will allow xt ∈ RN . Next, the algorithm
makes the prediction ŷt ∈ {−1,+1}, and finally observes the outcome yt ∈ {−1,+1} of
round t.

“Good Group” Assumption
We will assume that yt = sign(u·xt), so the outcomes are a linear threshold function defined
by some vector u. So, we are assuming that for all t, yt can be found via some weighted
majority vote of experts with weights given by u.

2.1 General Algorithm Outline

We now present a general framework encompassing the two algorithms (perceptron and
winnow) which we will present in the upcoming sections. Both involve keeping a weight
vector w which is updated each round after the algorithm sees the data, makes a prediction,
and observes the true outcome.

Algorithm Framework:
Initialize w1.
For t = 1, 2, . . . , T :

Observe xt ∈ RN .
Learner predicts ŷt =sign(wt · xt)
Observe yt ∈ {−1,+1}.
Update wt+1 = F (wt,xt, yt)

If we have the “good group” assumption, we want any specific algorithm to modify wt

to make predictions (almost) as good as those that u does as t increases. Moreover, since
the yt’s are of the form sign(u · xt) and our predictions ŷt are of the form sign(wt · xt),
the general algorithm is trying to learn a linear threshhold function on a hypercube (when

3

xt ∈ {−1,+1}N), or, in the more general case that xt ∈ RN , we return to learning a linear
threshhold function on our typical RN domain.

3 Perceptron Algorithm

Next, we present an algorithm to learn the linear threshold function by filling in the general
framework provided in the last section.

Initialize w1 = 0.
For t = 1, 2, . . . , T :

Observe xt ∈ RN .
Learner predicts ŷt =sign(wt · xt)
Observe yt ∈ {−1,+1}.
If ŷt 6= yt, let wt+1 = wt + ytxt

Otherwise, let wt+1 = wt

If the algorithm is wrong on input xt, the algorithm nudges wt so that the classifying
hyperplane is closer to classifying xt correctly in the future. If the algorithm is correct on
round t, then there is no update to the weight vector. Because of this, we call the perceptron
algorithm above conservative.

3.1 Analysis

In order to analyze the effectiveness of the perceptron algorithm, we first make a few
assumptions before presenting a bound on the number of mistakes the learner makes:

1. Without loss of generality, assume the algorithm makes a mistake on every round
(since otherwise the algorithm does nothing to wt). In particular, in the analysis
below, T will be the number of rounds with mistakes.

2. Without loss of generality, assume ∀t, ‖xt‖2 ≤ 1.

3. Strong “Good Group” Assumption:
∃δ > 0,∃u ∈ RN with ‖u‖2 = 1 such that ∀t, yt(u · xt) ≥ δ.
This assumption sacrifices generality and is assuming much more than before. We are
assuming that taking a weighted majority vote of experts is not only perfect, but also
that this prediction has a minimum margin δ. In other words, we are assuming there
is a linear threshold function (such as a committee of experts) which gives perfect
predictions with some baseline confidence about those predictions.

Theorem: Under the assumptions above,

mistakes perceptron algorithm makes ≤ 1

δ2

Proof: Let us keep track of the following quantity as t increases:

Φt =
wt · u
‖wt‖2

The quantity Φt is called the potential and is the cosine of the angle between wt and u.
Intuitively, if our algorithm is working, we would like wt and u to be making similarly

4

accurate predictions as t increases. Φt is one way of measuring the similarity between wt

and u, where Φt close to 1 indicates strong similarity in predictions.

We will find a lower bound on Φt which depends on the number of errors made (T) and use
the fact that ∀t,Φt ≤ 1 to bound the total number of errors the perceptron algorithm makes.

Step 1: Lower Bounding Φt Numerator
Claim 1: wt+1 · u ≥ Tδ
Sub-Proof: Because we are assuming the algorithm makes a mistake (and hence updates
w) on every round,

∀t,wt+1 · u = (wt + ytxt) · u = wt · u + yt(u · xt) ≥ wt · u + δ

Notice that the last inequality follows from the strong “good group” assumption — that
the margin of u’s predictions at least δ.
Combined with the fact that w1 · u = 0, we have that wt+1 · u ≥ Tδ. X

Step 2: Upper Bounding Φt Denominator
Claim 2: ‖wT+1‖2 ≤

√
T

Sub-Proof: Again, assuming the algorithm makes a mistake (and hence updates w) on
every round,

∀t, ‖wt+1‖22 = wt+1 ·wt+1 = (wt + ytxt) · (wt + ytxt) =

‖wt‖22 + 2yt(wt · xt) + y2t xt · xt
Then, since the algorithm makes a mistake on round t, yt(wt · xt) ≤ 0. Moreover, by our
normalization assumption, y2t (xt · xt) ≤ 1. In all, we have that

‖wt+1‖22 = ‖wt‖22 + 2yt(wt · xt) + y2t xt · xt ≤ ‖wt‖22 + 1

Recalling w1 = 0, we have that ‖wT+1‖22 ≤ T =⇒ ‖wT+1‖2 ≤
√
T . X

Step 3: Combining Bounds
Combining the two bounds above,

ΦT+1 ≥
Tδ√
T

=
√
Tδ

Then, since ∀t,Φt ≤ 1, we have that

√
Tδ ≤ 1 =⇒ T ≤ 1

δ2

where T is the number of mistakes the algorithm makes.

3.2 VC-Dimension Corollary

Recall from lecture #13 on SVMs, we made the following claim without proof:
Theorem: The VC-dimension of linear threshold functions (LTFs) containing the origin,
with margin δ, such that ∀i, ‖xi‖2 ≤ 1 is ≤ 1

δ2
.

We now are able to provide a short proof.

5

Proof: The algorithm above provides a bound on the maximum number of mistakes for
learning LTFs of the form above. From before, we therefore have that for any hypothesis
space H,

VC-dim(H) ≤ Mistake bound for any algorithm A learning H

From the theorem on the perceptron maximum error bound above, we therefore have that

VC-dim(LTF with margin δ through origin for ‖xt‖2 ≤ 1) ≤ 1

δ2

4 Winnow Algorithm

Why might we want a new algorithm? Consider the following setting:
Suppose the expert prediction vectors are of the form xt ∈ {−1,+1}N and that the

vector u is the simple majority vote of k of the experts so u ∈ {0, 1}N with k 1’s. Let us
assume k odd, so that for any xt, yt, the margin of the expert predictions yt(u · xt) ≥ 1.
However, in order to apply the bound of the perceptron algorithm derived above, we must
first normalize the vectors xt and u. So, the normalized x′t ∈ { −1√N ,

+1√
N
}N and likewise the

normalized u′ ∈ {0, 1√
k
}N . Then, to apply our perceptron analysis, the size of the margins

in this setup is yt(u
′ · x′t) ≥ 1√

Nk
which we will set to δ. The mistake bound derived in the

previous section then reads that the number of mistakes of the perceptron algorithm is at
most 1

δ2
= Nk.

While this is a good bound if N is small and there are only a few relevant experts, we
would really like an algorithm which allows us to bound the error by a function which is
O(lg(N)). We do so with the winnow algorithm:

4.1 Winnow Algorithm Description

Now, we fill in the gaps of the general algorithm outline from section 2.1 and present the
winnow algorithm. While the perceptron made additive updates to wt on rounds where the
algorithm made a mistake, the winnow algorithm revolves around a multiplicative update
to the weight vector wt on these rounds. Moreover, the winnow algorithm keeps wt as a
probability distribution over the experts so that for all t, wt is non-negative and its com-
ponents sum to 1.

Initialize w1,i = 1
N and fix some η > 0.

For t = 1, 2, ..., T :
Learner predicts ŷt =sign(wt · xt)
Observe yt.

If ŷt 6= yt, let wt+1,i =
wt,ie

ηyixt,i

Zt
where Zt is a normalization factor so

∑N
i=1wt+1,i = 1.

Otherwise, let wt+1 = wt

Notice that winnow, like the perceptron algorithm, is a conservative algorithm.
In the update step, if the prediction ŷt 6= yt, we can also write the next weight vector

as:

wt+1,i =
wt,i
Zt

{
e−η if yt 6= xt,i

eη if yt = xt,i
=
wt,i · eη

Zt

{
e−2η if yt 6= xt,i

1 if yt = xt,i

6

The last form should look familiar as it is the update rule for the weighted majority algorithm
(if we set β = e−2η). The winnow algorithm can be thought of as a recasting of WMA.

4.2 Analysis

For lecture #17.

7

