
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #15
Scribe: Yanxi Chen April 1, 2019

1 Recap

We consider the problem of online learning, and more specifically, learning from experts.
Denote by N the number of experts. The problem setting is as follows: for t = 1, 2, . . . , T ,

• Each expert predicts ξi ∈ {0, 1}, i ∈ [N].

• The learner predicts ŷ ∈ {0, 1}.
• The learner observes true label y ∈ {0, 1} (and makes a mistake if y 6= ŷ).

Note that in online learning, training and testing are mixed together. Also, compared
to PAC learning we have studied before, fewer statistical assumptions are made in online
learning, and we are considering an adversarial (or worst-case) setting.

In the previous lecture, we assumed that there exists (at least) one “perfect” expert
that never makes mistakes. We learned about the halving algorithm: at each step, ŷ is the
(unweighted) majority vote of all surviving experts, and after y is revealed, we eliminate
all experts that made a mistake (ξi 6= y). By the nature of the halving algorithm, when
the learner makes one mistake, the number of surviving experts is reduced at least by half,
which implies that the total number of mistakes m made by the learner satisfies m ≤ lgN
(where, as usual, lg denotes base-2 logarithm).

2 Online Learning vs. PAC Learning

We can consider a similar problem that can be viewed as an online analog of PAC learn-
ing. Denote by H = {h1, h2, . . . , hN} the (finite) hypothesis class, and c ∈ H the target
hypothesis. Then for each round,

• A data point x is observed.

• The learner predicts ŷ ∈ {0, 1}.
• The true label y = c(x) is observed.

Here, the adversary chooses target c (before learning starts), as well as the data points x.
We can treat this problem as a special case of learning with expert advice. In particular,
we can view each hypothesis hi, i ∈ [N] as an expert, whose prediction on each round is set
to the label given by the corresponding hypothesis so that ξi = hi(x). Then the number of
experts is N = |H |; also, c ∈ H implies that there exists a perfect expert. So, using the
halving algorithm, we get an upper bound on the number of mistakes of

lgN = lg |H |.

The right-hand side, lg |H |, can be seen as a natural complexity measure of the hypothesis
classH, which is similar to what we have seen at the beginning of our study of PAC learning.

It turns out that we can lower bound the number of mistakes by the VC-dimension of
H. Define

MA(H) = max (# mistakes of A),

where A is a deterministic algorithm, and the maximum is taken over the adversary and
measures the number of mistakes that A will make for the problem above for hypothesis
space H. Also define

opt(H) = min
A
MA(H)

to be the best-possible mistake bound for any deterministic algorithm A on hypothesis space
H.

Theorem 1.
VCdim(H) ≤ opt(H) ≤Mhalving(H) ≤ lg |H |.

Proof. The upper bound achieved by using the halving algorithm as A has been proved
before, so it remains to prove the lower bound. We fix the deterministic algorithm A. Also
denote d = VCdim(H); this implies that there exist d points, S = {x1, . . . , xd}, which are
shattered by H, i.e. any possible labeling on S can be realized by H. Intuitively, this
suggests that seeing labels for part of these d points actually reveals no information about
labels of the remaining points. To make this precise, let us restate the problem of online
learning from the perspective of the adversary. First, the adversary chooses c ∈ H (before
learning happens), and then for t = 1, . . . , d,

• The adversary presents xt ∈ S to the learner, i.e. the algorithm A.

• A makes prediction ŷt.

• The adversary reveals yt = c(xt) 6= ŷt, and A makes a mistake.

The reason why yt = c(xt) 6= ŷt, ∀t ∈ [d] is possible is because, in our setting, the algorithm
A is deterministic and known to the adversary; therefore, before learning happens, the ad-
versary can “simulate” A and know how A will label data points in S, and then pick c ∈ H
accordingly, so that c(xt) 6= ŷt,∀t ∈ [d]. In this sense, the adversary is definitely not “cheat-
ing”. (In comparison, in the PAC learning model we have studied before, the adversary can
only choose the distribution D, and then data is randomly generated according to D.) By
the process above, we have MA(H) ≥ d, and since this is true for any deterministic A, we
have opt(H) ≥ d = VCdim(H).

3 Weighted Majority Algorithm (WMA)

In the previous sections, we assumed that there exists at least one perfect expert, which
can be unrealistic in the real world. From now on, we drop such an assumption. Note that
the existence of a perfect expert guarantees that there will be at least one expert surviving
all rounds of the halving algorithm, while without a perfect expert, it is most likely that
the halving algorithm will end up with no surviving expert. A natural solution to solve
this problem is that, in each round, we take a weighted majority vote and update weights
for all experts (more precisely, decrease the weight of an expert if it makes a mistake in
this round), instead of taking an unweighted majority and totally eliminating experts who
make a mistake. This leads to the Weighted Majority Algorithm (WMA), as stated
in Algorithm 1.

2

Algorithm 1: Weighted Majority Algorithm (WMA)

Input : Parameter β ∈ [0, 1)
1 Initialize: weight of expert i, wi = 1, i ∈ [N] ;
2 for t = 1, . . . , T do
3 q1 =

∑
i:ξi=1wi, q0 =

∑
i:ξi=0wi, where ξi is the prediction of expert i ∈ [N] ;

4 Predict ŷ = 1 if q1 > q0 and ŷ = 0 otherwise ;
5 Observe y, and for i ∈ [N], if ξi 6= y, then update wi ← wi β.

6 end

In the setting where there exists no perfect expert, perhaps the best we can hope for is
that the number of mistakes is not larger than that of the best expert by too much. The
theorem below provides such an upper bound.

Theorem 2.

mistakes of WMA ≤ aβ (# mistakes of best expert) + cβ lgN, (1)

where

aβ =
lg 1

β

lg 2
1+β

, cβ =
1

lg 2
1+β

.

Remark 1. One may notice that there is a trade-off between aβ and cβ. A list of their
values with some particular choices of β is listed below.

β aβ cβ
1/2 ≈ 2.4 ≈ 2.4
→ 0 ∞ 1
→ 1 2 ∞

Proof. Define the total weight

W =

N∑
i=1

wi.

Note that W and the other variables we are using should be indexed by round t, but we
omit subscripts for notational simplicity; also note that W = q1 + q0. Initially W = N . On
round t, suppose that the true label is y = 0. Then

W new =
∑
i

wnew
i =

∑
i:ξi=1

wi β +
∑
i:ξi=0

wi

= q1 β + q0 = q1 β +W − q1 = W − (1− β) q1.

Therefore, if WMA makes a mistake at round t (ŷ = 1), then

q1 ≥ q0 ⇒ q1 ≥W/2⇒W new ≤ 1 + β

2
W.

The analysis for the case when true label y = 1 is the same. After WMA makes m mistakes,

W ≤ N
(

1 + β

2

)m
.

3

Algorithm 2: Randomized Weighted Majority Algorithm (RWMA)

Input : Parameter β ∈ [0, 1)
1 Initialize: weight of expert i, wi = 1, i ∈ [N] ;
2 for t = 1, . . . , T do

3 Predict ŷ = ξi with probability wi/W , where W =
∑N

i=1wi ;
4 Observe y, and for i ∈ [N], if ξi 6= y, then update wi ← wi β.

5 end

On the other hand, for each expert i ∈ [N],

wi = βLi , where Li = # mistakes of expert i.

Since wi = βLi ≤W ≤ N (1+β
2)m, we have

m ≤
Li lg 1

β + lgN

lg 2
1+β

.

Since this is true for any i ∈ [N], by taking the minimum over i, we complete the proof.

Another way to understand this theorem is to divide both sides of (1) by T (the total
number of rounds), which gives

mistakes of WMA

T
≤ aβ

mistakes of best expert

T
+ cβ

lgN

T
. (2)

Note that lgN
T → 0 as T → ∞; then the left-hand side is the “rate of mistake” for WMA,

while the right-hand side is aβ times the “rate of mistake” of the best expert. Unfortunately,
for any possible choice of β, the coefficient aβ ≥ 2, which is not ideal since we hope for a
coefficient 1 so that the learner will not be doing much worse than the best expert. It turns
out that it is impossible to achieve a coefficient 1 with a deterministic algorithm, which,
roughly speaking, is due to the limit of a deterministic algorithm in an adversarial setting.
This motivates us to design a randomized algorithm, which is the topic of the next section.

4 Randomized Weighted Majority Algorithm (RWMA)

The Randomized Weighted Majority Algorithm (RWMA) is stated in Algorithm 2.
The only difference between RWMA and WMA is that, in RWMA, we pick expert i with
probability proportional to wi, and follow the prediction of the chosen expert.

Since RWMA is randomized, the number of mistakes is also random. The following
theorem provides an upper bound of the expected number of mistakes by RWMA.

Theorem 3.

E[# mistakes of RWMA] ≤ aβ (# mistakes of best expert) + cβ lnN, (3)

where

aβ =
ln 1

β

1− β
, cβ =

1

1− β
.

4

Remark 2. Notice that in (3), the expectation is only over the randomness of the algorithm;
everything else is still adversarial.

Proof. Initially W = N . On round t, define

` = Pr(ŷ 6= y) =

∑
i:ξi 6=y wi

W
.

(Again, we omit the index t.) Then

W new =
∑
i:ξi 6=y

wnew
i +

∑
i:ξi=y

wnew
i =

∑
i:ξi 6=y

wi β +
∑
i:ξi=y

wi

= W ` β +W −W` = W (1− `(1− β)).

Now we bring back the index t, and

Wfinal = N
T∏
t=1

(1− `t(1− β)) ≤ N
T∏
t=1

e−`t(1−β) = N e−(1−β)
∑T

t=1 `t .

The analysis for a single expert is the same as in the theorem of WMA, and we have
Wfinal ≥ wi = βLi , where Li is the number of mistakes made by expert i; this is true for all

i ∈ [N]. Therefore βLi ≤Wfinal ≤ N e−(1−β)
∑T

t=1 `t , which gives

T∑
t=1

`t ≤
(ln 1

β) mini Li + lnN

1− β
.

Notice that the left-hand side is actually

T∑
t=1

`t =
∑
t

Pr(ŷt 6= yt) =
∑
t

E[1(ŷt 6= yt)] = E[# mistakes of RWMA],

which completes our proof.

Given (3), one is tempted to pick β → 1 so that aβ → 1, which is our motivation to
use a randomized algorithm, as stated at the end of the previous section. However, this
will give cβ → ∞; therefore, the choice of β is not so trivial. For example, if we know a
priori that mini Li ≤ K for some K (e.g. a trivial bound is K = T), then we can pick
β = 1/(1 +

√
2(lnN)/K), and after some algebra, this gives

mistakes of RWMA ≤ min
i
Li +

√
2K lnN + lnN,

or equivalently,

mistakes of RWMA

T
≤ mini Li

T
+

√
2K lnN

T
+

lnN

T
,

where the last two terms go to zero as T → ∞, and RWMA achieves the same rate of
mistake as the best expert.

As a final remark, let us view WMA and RWMA under a unified framework. The
difference between WMA and RWMA is, in fact, their probabilities of choosing ŷ = 1 in
terms of Z := (

∑
i:ξi=1wi)/W ∈ [0, 1]. For WMA, the probability is 0/1, using Z = 0.5

as the threshold; for RWMA, the probability is linear in Z, as shown in the figure below.
This suggests that, by choosing a different function g for Pr(ŷ = 1|Z) = g(Z) (red line), we
actually obtain a new randomized algorithm (which we call “RWMA2” in the figure below).
For example, with a proper design of g, we can achieve # mistakes ≤ mini Li +

√
K lnN +

(lgN)/2; this will be discussed in more detail in the next lecture.

5

0 0.5 1
0

0.5

1

WMA
RWMA
RWMA2

6

