COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #12
Scribe: Paula Gradu March 13, 2019

1 Boosting

1.1 Review

Last time we discussed the AdaBoost algorithm which uses a weak learning algorithm T
times to get T weak hypotheses and combines them intelligently in order to achieve low
training and generalization error. Given training set S = ((z1,41), -, (Tm, Ym)), We begin
with a uniform distribution over examples and then update it as illustrated below:

Algorithm 1 AdaBoost
for T=1,...,T do
Run A on D; and get weak hypothesis h; € H
o = %ln 1;—:’5 >0
Dy1(3) = Z%Dt(z')e*atyiht(“) (where Z; is a normalization factor)
end for
output H(z) = sign(Z:iT:1 arh(x))

Last time we proved the following bounds on the training error and generalization error
of the combined hypothesis H produced by AdaBoost:

Theorem 1.1. é&r(H) < [[,(2/e(1 — &) < 2T where the last inequality holds if
Y >y for all t (i.e. if our weak learning assumption holds).

Theorem 1.2. With probability 1 — 6, errp(H) < érr(H) + O (\/ W), where d is
the VC-dimension of the weak hypothesis space H.

1.2 Theory vs. Reality

Based on the two theorems above, if we were to plot the performance of boosting against the
number of rounds of boosting T', we expect that the training error would go down extremely
fast (by Theorem 1.1), while the test error would initially go down but then eventually start
going back up (by Theorem 1.2). In other words, we expect to see overfitting for large values
of T'. This expectation is summarized in the plot below:
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So is this prediction consistent with practice? To answer this question, we will examine
two different examples of AdaBoost’s performance as a function of T" on real data.

Example 1.3. Performance of boosting with decision stumps on the heart-disease dataset:
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This example fits our expectations very well, achieving lowest test error for 7" = 3 and
then degrading as we further increase T'. The example above is not at all representative of
an actual typical run of AdaBoost however.

A much more common outcome is illustrated in the example below:

Example 1.4. Performance of boosting with decision trees on a dataset of handwritten
letters of the alphabet:
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Clearly, the graph above does not seem to correspond to the theory we have developed
so far. Even after the training error becomes 0 for T = 5, contrary to what Theorem
1.2 would suggest (if we were to assume it provides helpful information about AdaBoost’s
performance), the test error just keeps decreasing further. These results show that a very
large T', such as T' = 1000, despite producing a very large model (in this particular case
T = 1000 creates a model of over 2,000,000 nodes), can yield much lower generalization
error than smaller values such as T' = 5, even if the training error is zero in both cases. This
goes against the intuition of Occam’s Razor which suggests that, out of multiple consistent
hypotheses, we should always pick the simplest one.

So what is the reason for this seeming paradox? First, clearly O ( 4/ W) is not

a helpful bound. Secondly, training error only tells part of the story. It turns out that
the generalization error depends not only on the fraction of correctly classified examples,
but also on the confidence with which a particular class is assigned. So, in truth, although
nothing seems to be happening if we only look at training error, the combined hypothesis
gets more and more confident as we increase 7" which translates to increased performance
on test data.

In order to properly understand and explain the observed behavior we need to intro-
duce a mathematically rigorous interpretation of the idea of “confidence”. In the following
section, we will first do this and then reanalyze the performance of AdaBoost.

1.3 Confidence: From Intuition To Theory

We can think of the combined hypothesis as a weighted majority vote. Just like in elections,
we will measure the confidence of a particular election outcome (i.e. of the class assigned
to a particular example) by the following quantity:

margin = (weighted fraction of votes for correct class)
—(weighted fraction of votes for incorrect class)

Since H () = Sign(ZZTzl athy(x)) = sign(C 2?21 athi(z))VC > 0, we can normalize the
weights by taking 1/C = Y.L, a; > 0 and considering H(z) = sign(3.L_, asht(x)) where
a; = Cay = Y1 a; = 1. From now on we will refer to S0 ashs(z) as f(x).

Using the notations above, we define the margin (with respect to f) to be:

Definition 1.5. margin(z,y) = 3 y.p, (x)=y U — Dot:hy(x)£y U

Observation 1.6. margin(z,y) = yf(z).



+1 if hy(x) =
Proof. Zt:ht(ac):y at—Zt:ht(ac)yéy ar = Zt at'{ 1 if hZE$§ # z = yzzrzl athi(z) =y f(z).

O

Since y € {£1} and f is a convex combination of hi(z) € {£1}, we have that f(z) €
[—1,1] and margin(z,y) € [—1,1]. Moreover, the combined hypothesis H is correct if and
only if yf(x) > 0. Furthermore, the closer yf(z) is to zero, the more evenly divided the
“votes” are and conversely for yf(z) close to 1 or —1. Therefore, the magnitude of yf(z)
represents the level of confidence of the prediction.
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Since the motivation for introducing this quantity was to hopefully better capture what
is actually happening in AdaBoost as T increases, let’s look at T”s influence on the margins
of the examples in S. The graph below shows the cumulative distribution of margins of the
training instances after 5, 100, and 1000 iterations, indicated by short-dashed, long-dashed,
and solid curves, respectively.
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So, as T increases, the lower margin is being pushed to the right (i.e. H is becoming
increasingly confident). Clearly, based on the performance in example 1.4, it would be
reasonable to guess that higher margins lead to better generalization error. Our goal in
the next section is to explore the theory that goes along with the empirical evidence above.
More specifically, we will (1) show this phenomenon is not a coincidence (i.e. that AdaBoost
tends to produce higher margins as T' gets large), and (2) prove that large margins lead to
better generalization error. We will do so by deriving a bound that is independent of T’
which will show that what matters in driving down generalization error is not the number
of rounds of boosting, but the margins obtained.

1.4 Number of Rounds of Boosting vs. Margin Sizes on Training Data

We first observe that the training error on S can be rewritten as ﬁ"g[y f(z) <0]. What we
are actually interested in is Prglyf(x) < 0] where 6 > 0 is the margin we care about. By
proceeding in the same manner as when proving Theorem 1.1, we get that:



Prslyf(z) < 6] gH( 16)10>

t=1

If weak learning holds (so that 4 >« for all ¢), then this is at most

[(1—29)' 701+ 29) "+

It is also possible to show that for 8 < ~:

(1-29"01+29)" <1

So, under the weak learning hypothesis assumption, as T' — oo, we have that y; f(z;) > v,
Vi. That is, VO < v, every example will eventually have margin at least v which is what we
hoped for. Based on this result, we can also note that a larger edge leads to larger margins.

1.5 Large Margins Lead to Low Generalization Error

Let d = VC-dim(#). We will start with what we had from Theorem 1.2:

“*DﬂH?féé%(H>+mi<V/Td+;fl/5>
We can rewrite this as:

What we want is to not have overfitting which means we would like to get rid of the T in
the numerator: so we hope for O <\/ dﬂ:;l/a). To get this, we need to give something up.

‘Based on the previous section, we will attempt to bound generalization error in terms
of Prglyf(xz) < 0] instead of Prglyf(z) < 0] (i.e. in terms of the fraction of examples with
small margin instead of in terms of training error). But when 6 is very close to zero, we are
back to simply measuring the training error, so we expect there to be a degradation in the
bound. This is reflected in the second term of our bound, where T'd is in fact replaced by
d/o>.

To state our bound, we introduce the convex hull, the set of all convex combinations of
hypotheses in the space H.

Definition 1.7. co(H) ={f: X — Zthl athy(x) | a; > 0, ZtT:l ar =1, hy € HT > 1}.
Observation 1.8. All possible outputs of boosting are included in co(H).
Using this, we will prove the following theorem:

Theorem 1.9. With probability > 1 — 5, Vf € co(H) and V0 > 0, we have that:

meﬂ@smsﬁ%WA><m+O(VEWﬁfﬂM>



Although the bound holds for all § > 0, we will only prove it for a fixed value of §. To
do so, we will use the theory of Radamacher complexity which we have discussed previously.

Lemma 1.10. Rs(H) < O(\/d/m).
Proof. See lecture 10. 0
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Lemma 1.11. Rg(H) = Rg(co(H)).

Proof. R R
H C co(H) = Rg(co(H)) > Rs(H) (1)
On the other hand,
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(1) and (2) = Rg(H) = Rs(co(H)).
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So, although it may feel like extending the space to co(H) should increase the Radamacher
complexity, doing so actually maintains the complexity of the original space.

Sometimes we want to consider passing all of the functions in some space through some
fixed function ¢ : R — R. The natural question which arises is: what is the Rademacher
complexity of the new space of transformed functions?

More concretely, given a space of functions F, we are interested in the Radamacher
complexity of the space po F = {¢po f: f € F}, where ¢ o f denotes the composition of ¢

with f, so (¢ o f)(z) = &(f(2)).

Usually, a general formula can’t be deduced without some assumptions on ¢. An of-
ten useful assumption is Lipschitz continuity which provides a bound on the slope of the
function:



Definition 1.12. f is said to be Lipschitz continuous if |p(u) — ¢p(v)| < Lg|lu — v| Vu,v,
where Ly is called the Lipschitz constant.

For such functions, we have the following important result:
Lemma 1.13. (Talagrand’s Concentration Lemma) For ¢ a Lipschitz continuous function,
Rs(¢ o F) < LgRs(F).
Proof. See Mohri et al. O

For any function f, we will be interested in the associated margin function, margs(x,y) =
yf(x), which computes the margin of any example (x,y) with respect to f. We’ll look at
all the functions of the form M = {margs : f € co(H)}.

In a manner similar to a related proof from lecture #10, we can also obtain the following
result:

Lemma 1.14. Rg(M) = Rg(co(H)).
Now we are finally able to prove the main theorem (Theorem 1.9):
Proof. We want to use the previous result that with probability > 1 — 9, Vg € F:
Elg] < Eslg] +2Rs(F) + O(...)
To do so, we will look at:
Prplyf(z) < 0] = Ep[l{yf(z) < 0}]
Prslyf(x) < 6] = Es[1{yf(z) < 6}]

To resolve the mismatch between 0 and 6, we define ¢ : R — [0, 1] to be:

1 ifz<0
plz)=< 1—z/0 if0<z<0
0 ifx>0

That is, we stretch the function between 0 and @ as illustrated below:
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Therefore, we have that:
Hyf(x) < 0}(x) < ¢(x) < Hyf(z) < 0} (x) =
Ep[I{yf(z) < 0}] < Eplé(yf(x))]
Es[1{yf(x) < 0}] > Es[6(yf(x))]



Since ¢ is Lipschitz continuous with Lipschitz constant 1/6, we can use Talagrand’s
Concentration Lemma to get that:

Ry(¢p o M) < LyRg(M) = (1/8) Rs(H) by lemmas 1.11 and 1.14
< (1/6) O(y/d/m) by lemma 1.10
Since Vf € F:

Ep|f] < Es[f] + 2Rs(F) + O ( Wl/é))

m

We have that, with probability > 1 — §:

Prplyf(z) <0]
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So we have succeeded in proving that we can indeed use boosting without overfitting and
in bounding its generalization error in terms of the margin . Now the theory corresponds
to the empirical evidence suggesting that larger margins lead to better test results.
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