
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #11
Scribe: Ji-Sung Kim March 11, 2019

Review. Last time we started to look at a seemingly much weaker notion of learning in
which the learning algorithm only needs to do slightly better than guessing. We described
the notion of a “weak learning” algorithm in comparison to our previously established
notion of a “strong learning” algorithm. For comparison to the properties of a strong
learning algorithm, we describe the properties of a weak learning algorithm by listing the
properties of a strong learning algorithm, crossing out any non-necessary properties, and
including any new properties of a weak learning algorithm in red. We say that a concept
class C is strongly weakly learnable if:

• ∃γ > 0

• ∃ algorithm A

• ∀c ∈ C, ∀distributionD

• ∀ε > 0

• ∀δ > 0

for which the following holds: A takes m = poly(1, /δ) examples and computes h and
Pr[errD(h) ≤ ε] ≥ 1− δ Pr[errD(h) ≤ 1

2 − γ] ≥ (1− δ). γ is sometimes called the edge.

One major question is: are these two equivalent? Yes! This has a very important
implication for learning. We previously saw that learning appears to be an all-or-nothing
phenomenon (recall the discussion of the “dichotomy” corollary of Sauer’s lemma which
states that either the VC-dimension of a hypothesis space H is finite and the bound on
ΠH(m) is polynomial (good) with respect to m, or the VC-dimension is infinite and the
bound is exponential (bad)). The answer to the previous question reinforces this idea in
that we can only learn something all the way or not at all — being able to consistently
achieve slightly-better-than random guessing (achieve weak learning) implies that we can
also achieve strong learning.

Theorem. A concept class C is strongly learnable if and only if it is weakly learnable. This
same principle holds with efficiency: C is efficiently (poly-time) strongly learnable if and
only if it is efficiently weakly learnable.

1 The boosting problem

To show that strong and weak learning are equivalent, we need to find a way of converting
any weak algorithm to a strong learning algorithm. We will describe a method for doing so
here.

Given: m examples from a target distribution D, S = 〈(x1, y1), ..., (xm, ym)〉, xi ∈ X ,
y ∈ {−1,+1}, and access to weak learning algorithm A (which, given “enough” random
examples from any distribution D, outputs h ∈ H such that Pr[errD(h) ≤ 1

2 − γ] ≥ 1− δ).



Problem: Find a hypothesis H which has, with high probability, arbitrarily small gener-
alization error, errD(H).

In order to do so, we will want to combine the hypotheses h1, ..., hT produced by weak
learning algorithm A to create a final or combined hypothesis H.

The high-level idea is that we need to design an algorithm which calls a general weak
learning algorithm A as a subroutine. This desired algorithm should somehow combine the
collective work of multiple executions of A. We will take advantage of the fact that the weak
learning algorithm A works for all distributions. We will run it on different distributions
across all executions of A. This idea leads us to the AdaBoost algorithm.

1.1 AdaBoost

Algorithm 1 AdaBoost

for t = 1, ..., T do
(1) Run A on Dt to get weak hypothesis ht : X → {−1,+1}
(2) εt = errDt(ht) =

∑
i:ht(xi)6=yi Dt(i) = 1

2 − γt
(3) Dt+1(i) = 1

Zt
Dt(i)e

−αtyiht(xi) where αt = 1
2 ln

(
1−εt
εt

)
> 0

end for
(4) Output H where H(x) = sign

(∑T
i=1 αtht(x)

)
.

Although in principle A should work for any distribution, AdaBoost only uses A for dis-
tributions defined over the training examples. Therefore, to simplify notation, we treat Dt

as a distribution over the indices of the training examples {1, . . . ,m}. Dt(i) is the weight
under distribution Dt on the i-th example. We can think of Dt(i) as the importance given
to each example. How do we construct these distributions? Well, for the first distribution
D1, we will put equal importance to all examples.

On each round, after receiving ht from A, we need to update the next distribution. Each
time, we want to increase the weight on incorrectly classified examples (multiply old weight
by some factor > 1), and decrease the weight on correctly classified examples (multiply old
weight by some factor < 1). For this multiplicative factor, we choose e−αtyiht(xi). Zt is the
normalization factor (we will manipulate this a lot later on). We implicitly use the following
simplification:

e−αtyiht(xi) =

{
eαt if ht(xi) 6= yi

e−αt if ht(xi) = yi

The choice of e−αtyiht(xi) as the multiplicative factor seems arbitrary but we will see in later
computations that this choice leads to a bound on the training error.

The final hypothesis H is a weighted majority vote of the weak hypotheses ht. The weights
are given by αt. In our notation, we use the sign(·) function which simply returns −1 if the
input is negative, +1 if the input is positive, and 0 if it is zero.

2



2 Theorem on AdaBoost’s training error

For AdaBoost, the training error is bounded in the following fashion:

êrr(H) ≤
T∏
t=1

√
2εt(1− εt)

=
∏
t

√
1− 4γ2t (note: 1 + x ≤ ex)

≤ exp

(
−2

T∑
t=1

γ2t

)

Small corollary. If ∀t γt ≥ γ (this is the weak learning assumption), then êrr(H) = e−2γ
2T .

This tells us that as long as each weak hypothesis is slightly better than random, the training
error goes down exponentially fast.

We will now prove this in three steps!

2.1 Proof, Step 1

We would like to show that: DT+1(i) = e−yiF (xi)

m
∏T

t=1 Zt
where F (x) =

∑T
t=1 αtht(x)

Proof. We first reason about the update on the weight on each example Dt(i). We use
the fact that Dt+1 can be directly computed by rolling out all prior recursive multiplicative
updates to a single flat product.

Dt+1(i) = Dt(i) ·
e−yiαtht(xi)

Zt

DT+1(i) = D1(i)
e−yiα1h1(xi)

Z1
· ... · e

−yiαT hT (xi)

ZT

=
1

m

exp (−yi
∑

t αtht(xi))∏
t Zt

=
exp (−yiF (xi))

m
∏
t Zt

2.2 Proof, Step 2

We would like to show that the training error êrr(H) ≤
∏T
t=1 Zt.

Proof. We can rearrange the result from step 1 to get an expression for e−yiF (xi):

DT+1(i) =
e−yiF (xi)

m
∏T
t=1 Zt

e−yiF (xi) = DT+1(i) ·m
T∏
t=1

Zt

3



We observe the following 1{H(xi) 6= yi} = 1{sign(F (xi)) 6= yi} = 1{yif(xi) ≤ 0} ≤
e−yiF (xi . The last step follows from the fact that:

• if yiF (xi) ≤ 0, then 1{yiF (xi) ≤ 0} = 1 ≤ e(something non-negative)

• else (if yiF (xi) > 0), then 1{yiF (xi) ≤ 0} = 0 ≤ e(something negative).

Using the above, we can reason:

êrr(H) =
1

m

m∑
i=1

1{H(xi) 6= yi}

≤ 1

m

m∑
i=1

e−yiF (xi)

=
1

m
·
m∑
i=1

DT+1(i) ·m
∏
t

Zt

=
∏
t

Zt since

m∑
i=1

DT+1(i) = 1

2.3 Proof, Step 3

We would like to show that Zt = 2
√
εt(1− εt).

Proof. We use the fact that the normalization factor Zt is equal to the sum of the weights
(since we want all weights to sum to 1). We split apart the terms into two groups of samples:
where the hypothesis is wrong and where the hypothesis is correct.

Zt =
∑
i

Dt(i)e
−αtyiht(xi)

=
∑

i:ht(xi)6=yi

Dt(i)e
αt +

∑
i:ht(xi)=yi

Dt(i)e
−αt

= εte
αt + (1− εt)e−αt

We used the fact that εt =
∑

i:ht(xi)6=yi Dt(i) and (1− εt) =
∑

i:ht(xi)=yi
Dt(i). This follows

from (2) in the AdaBoost algorithm.

We can minimize this expression with respect to αt (take the derivative), which yields the
choice of αt given in the algorithm. Plugging into the expression for Zt above, we get
Zt = 2

√
εt(1− εt). We want to minimize Zt because this gives us the tightest upper bound

on êrr(H) (see step 2). This makes training error go down as fast as possible.

3 Discussion of AdaBoost’s generalization error

Our previous discussion is about the training error for AdaBoost. However, just because the
algorithm achieves a low training error, this does not mean that the algorithm will generalize
well on unseen data. As a result, we would like to characterize the generalization error of

4



AdaBoost using the general tools we previously developed in class and in the homework
assignments.

Recall that H has the form sign(
∑

t αtht) and so we can consider H as a function g of
functions ht. We can rewrite H(x) = g(h1(x), ..., hT (x)) where g(z1, ..., zT ) = sign (

∑
t αtzt).

The vectorized form of this is: g(z) = sign(w ·z) where w = 〈α1, ..., αT 〉. The outer function
g is a linear threshold function (LTF) in RT .

Now, consider the space F of all functions of this form g(f1, ..., fT ) where g ∈ G, ht ∈ H.
Let d be the VC-dimension of H. We know that VC-dim(G) = T because G is the space of
LTFs whose VC-dimension is the dimensionality (the number of dimensions) of the input
domain.

We recall from HW2, that for a composition of functions of this kind:

ΠF (m) ≤ ΠG(m)

T∏
t=1

ΠH(m) = ΠG(m) · (ΠH(m))T

We also remember that ΠH(m) ≤ Φd(m) ≤
(
em
d

)d
. We can then reason that ΠF (m) ≤

ΠG(m) [ΠH(m)]T ≤
(
me
T

)T (me
d

)dT
Then, using the bound using the growth function we previously saw:

err(H) ≤ êrr(H) + Õ

(√
Td+ ln 1/δ

m

)

We remark that Td is a measure of the complexity of H which is reasonable since H is the
combination of T weak hypotheses each with complexity d.

5


