COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #10
Scribe: Zoe Ashwood March 6, 2019

1 Summary and Goal for Class

Previously we provided bounds on generalization error in terms of three different complexity
measures — the cardinality of the hypothesis space, |H|, the growth function Iy (m) and
the VC-dimension, VC-dim(#). In this lecture, we will introduce a fourth measure of
complexity, the Rademacher complexity. We would like to provide a uniform convergence
theorem of the form: with probability 1 — J, Yh € H, |err(h) — efr(h)| < €, but we will
first prove a more general result. After obtaining a bound on the generalization error
in terms of the Rademacher complexity, we will show that the Rademacher complexity
measure subsumes all three of our previous complexity measures and that we can get back
many of the bounds that we saw earlier in class by evaluating Rademacher complexity for
different hypothesis spaces. We will conclude part 1 of the course (writing bounds for the
generalization error in terms of training error and complexity measures) and we will start
part 2, which introduces learning algorithms such as boosting.

2 Generalization Bounds with Rademacher Complexity
In the last lecture, we were in the middle of proving the following theorem:

2.1 Theorem

Let F be a family of functions f : Z — [0,1], S = (21, ..., zm) where z; ~ D. Then with
probability > 1 — 46, Vf € F:

(L
El] < Bolf] + 2,() + 01 222 o
and
1
Bl < Eslf)+ 2Rs(5) + 01 22))
where

Rs(F) = Eqy [sup (; Zl: Uif(%))]

ferFr

is the empirical value of the Rademacher complexity for Rademacher Random Variables

N[— D=

1 with probability
o =
—1 with probability

and
R (F) = Es[Rs(F)]

is the expected value of the Rademacher complexity. Furthermore,

E[f] =E..p [f(z)]

and)

Eslf] = > f(z)
2.2 Proof
2.2.1 Step1

In the previous lecture, we proved that, with probability > 1 — 6,

ln(%)
P(S) <Es[®(S)] + p
where
(S) = Sup <E[f] - Es[f])
2.2.2 Step 2
We will now show that
Es[®(S)] < Ess [?elg (Es/[f] — Es[f])] (3)

for ghost sample &’ = (2], ..., z1,,).

Proof: Observe that: R
Es[Es [f]] = E[f]
and

Es [Es(f]] = Es|f]

where the last identity follows because Es [f] does not depend on &', so this is equivalent
to taking the expectation of a constant.
Then we can write:

Bs[9(S)] = Es[sup (BLf] - Es(f])]

= FEs [sup (ES’ [ES’ 1= IAES[f@)]

fer

< Bt | sup (Eolf] - Eslf])

feFr

as required. Here we used our observations to obtain the second equality, and we used the re-
sult that, for random variables, X1, ..., X,, Emax;{X, ..., X, }] > max{E[X1], ..., E[X,]}
to obtain the last inequality. (The proof of this result: max{Xi,..,X,} > X; Vi —
Emax{X1,...,X,}] > E[X;] Vi. The argument generalizes even when working with in-
finitely many random variables).

2.2.3 Step 3

~

We would now like to examine the difference of empirical averages, Eg/[f] — Es[f], more
closely.

Let’s create two new sets, 7' and 1", as follows:

fori=1,...,m:
swap z; and z; with probability %
do nothing else

Let’s now examine Eg/[f] — Es[f] (call this (1)) and we note that E7[f] — Er[f] (call
this (2)) has the same distribution as (1). This is because all of the samples are i.i.d., so
permuting the samples does not change their distribution.

We can rewrite (1) as:

Eslf] - Bslf] = L3 (f(z;-) - f(%))

m =
i

and we can rewrite (2) as:

sein s = {0 L
S MV CIRE)

1 no swap .

where o; = is a Rademacher Random Variable. Substituting our new

—1 swap
expression for the difference of empirical averages into the right hand side of Equation 3,
we obtain that

Es [sup (B 1f] - Eslf)] = Esa | sup (NOR)] @

fer feF \m

2.2.4 Step 4

We would now like to show that

B s (0 Y on(7G) - 1))| < 220 (7) (5)

feF \m =

We see this by rewriting

Es,sxa[sup (7711 Zﬂi (f(z) — f(@))] <Es.s 0 [SUP (; Ei:%f(zé)ﬂ

ferF - feF
+Bsoo[sup (L onst)] o
=Ry (F) 4+ Rn(F) Z
= 2R, (F)

where, to derive the inequality, we used the fact that max(A + B) < max(A) + max(DB)
and for the first equality, we used the fact that —o; has the same distribution as o;. We
also used that the first expectation after the ‘<’ sign does not depend on sample S and
the second does not depend on sample S§’. We have now obtained the first bound of the
Theorem.

2.2.5 Step 5

To obtain the second bound in terms of RS(}"), it’s enough to use McDiarmid’s inequality
to show that Rs(F) and R,,(F) = Eg[Rs(F)] are “close” (i.e. their difference is of the

1
same order as (%) term).

3 Generalization Bounds with Rademacher Complexity

Let’s now use the Theorem that we just proved to derive some generalization bounds.
Reminder:

cir(h) = 3" 1{h(x:) #)

=Es[1{h(z:) # yi}]

is the training error and

err(h) :Pr(x,y)ND[h(I) 7é y]
=E[1{n(z:) # vi}]
is the generalization error.

Let Z = X x {—1,1} and Fy = {fn : h € H}, where fy(z,y) = 1{h(z) # y}, for
hypothesis space ‘H and for instance space X. If we plug in the function space F3 and
the space Z into the theorem we just proved then, with probability > 1 — 6, Vf, € Fy
(equivalently Yh € H, since there is a one-to-one mapping between F3 and H):

ln(%)

- >:efr(h)+2Rm(]~'H)_|_O< In(3)

")

err(h) = Elfu] < Bslfa] + 2Ron (Fre) + 0(

err(h) < err(h) + QRS(}"H) + O< hl(mé)>

if we rewrite in terms of the empirical Rademacher complexity.
But what is the Rademacher complexity, Rs(Fy)?

Rs(fH)ZEa[sup <;Lzo'ifh(xiayi)>}

fn€Fn

=5 [(1 (5
= 5[y ot pop (5 20 (- ean)oton)

her \M =

= %RS(H)

In the last step, we used that Vi E,[o;] = 0, and that —o;y; is distributed like a standard
Rademacher variable (-1 or +1 with equal probability).

Pulling everything together, we can finally obtain generalization bounds in terms of
Rademacher complexities of the hypothesis space, H:

err(h) < efr(h) + Ry, (H) + O(ln(m(ls)> (7)
and
n(l
err(h) < efr(h) + Rs(H) + o(l(mé)) (8)

4 Evaluating Rademacher Complexities

We see now that we have proved uniform convergence of the training error to the general-
ization error for every h € H in terms of the Rademacher complexity of H. Hence, we will
now focus on how to compute Rg(H).

4.1 Finite hypothesis spaces
We begin by considering finite hypothesis spaces.

Theorem: (Massart’s Lemma) For hypothesis space H with |H| < oo and for binary
functions with outputs in {—1, 1}, and for any S:

Rs(H) < 2n([%]) (9)

m
We will not prove this result here (we will do so later in the course; a proof is also given in

the textbook).

If we now plug this result into the generalization bound we just obtained, we get back:

err(h) < efr(h) + 21117(n|7-[|) + O< ln(};)> (10)

m

which is a result we showed earlier in class but which we had to obtain by using a customized
argument (using Union bound and Chernoff). Here, the result is a consequence of the bound
and Rademacher. The In(|H|) complexity measure is subsumed by Rademacher complexity.

4.2 Infinite Hypothesis Spaces

Turning next to infinite hypothesis spaces, we next derive a bound on Rademacher com-
plexity in terms of the growth function.

4.2.1 Bound in terms of Growth Function

R (F) = EU[Sup <;;am(zi)>] (1)

heH

Observe: all that matters is what is happening on training samples, S, and while we are
still working with an infinite hypothesis space, we can construct

H' = {one representative from H for each labeling in S}

Then note that:
(1| = [Ty (S)| < Ty (m)

and that replacing H with H’ does not change the Rademacher complexity since H' includes
exactly the same behaviors on S as H. Hence, if we replace H with H' in Equation 11:

Rs(H) = Rs(H') < \/2ln(|7—[’|) = \/QIH(“_[H(S)D < \/2111(|H7-£(W)|) (12)

m m - m

and we can write a bound for the generalization error in terms of the growth function.

4.2.2 Bound in terms of VC-dimension

Let d = VC-dim(H). From Sauer’s Lemma, we have:

Iy (m) < (T)d

for m > d > 1. Plugging this into Equation 12, we get a generalization error bound in
terms of the VC-dimension:

exr(h) < er(h) +) 2LRED) | 0< ln(§)> (13)

m

5 Learning Algorithms

We have now finished Part 1 of the course (writing bounds for the generalization error in
terms of the training error and complexity measures), and we will now begin Part 2, which
introduces learning algorithms. Let’s now modify PAC-learning (where the color blue is
used to indicate a modification):

Let C be a concept class. We say C is weakly learnable if 3y > 0, 9 algorithm A, Ve € C,
V distributions D, ¥§ > 0 such that, when A is given poly(%, ...) examples, it outputs h
such that

Pr(err(h) < % —y)>1-0

Whereas in strong learning (the version of PAC learning we have been considering until
now), there exists an algorithm that can achieve arbitrarily low error on every concept in
the class; in weak learning, the learning algorithm only needs to achieve an error that is
slightly better than %, which is what we would get by guessing randomly.

The question is now whether weak and strong learning are equivalent, that is, whether
there are some concept classes that can be weakly learned but not strongly learned, or if it
is the case that every class that can be weakly learned can also be strongly learned.

