
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #9
Scribe: Utsav Popat March 4, 2019

1 Recap

We had started looking at the case where the data points and labels came in pairs, and were
drawn from some distribution D. Given a sample of i.i.d. random variables X1, . . . , Xm,
with Xi ∈ [0, 1], we defined p = E[Xi] and p̂ = 1

m

∑m
i=1Xi and sought to show that p̂

converges uniformly to p. To do this, we proved Hoeffding’s Inequality:

Pr [p̂ ≥ p+ ε] = Pr [p̂ ≤ p− ε] ≤ e−2ε2m

and found stricter bounds for these quantities using Relative Entropy 1 2 :

Pr [p̂ ≥ p+ ε] ≤ e−RE(p+ε‖p)m

Pr [p̂ ≤ p− ε] ≤ e−RE(p−ε‖p)m

2 McDiarmid’s Inequality

We now look at a generalisation of Hoeffding’s Inequality — McDiarmid’s Inequality. While
constructing Hoeffding’s Inequality, we had considered p̂ = 1

m

∑m
i=1Xi, and had shown that

1
m

∑m
i=1Xi = p̂ −→ p = E [Xi] = E

[
1
m

∑m
i=1Xi

]
. Suppose we now wanted to consider a

general case where we replace p̂ by some function of the sample, f (X1, . . . , Xm). Could
we always claim that f (X1, . . . , Xm) −→ E [f (X1, . . . , Xm)]? For this to hold, we need a
special property that changing one input to the function f does not change its value by
much. Formally, we assume that ∀i,∀x1, . . . , xm and x′i (where x1, . . . , xm, x

′
i are possible

values for the input variables of the function f)

|f (x1, . . . , xi, . . . , xm)− f
(
x1, . . . , x

′
i, . . . , xm

)
| ≤ ci

where ci is some constant.

Theorem 1 (McDiarmid’s Inequality). Assume X1, . . . , Xm are independent (not neces-
sarily identical) random variables, and f is some function that satisfies the property above.
Then,

Pr [f (X1, . . . , Xm) ≥ E [f (X1, . . . , Xm)] + ε] ≤ exp

(
−2ε2∑m
i=1 c

2
i

)
.

Hoeffding’s Inequality is a special case of McDiarmid’s Inequality. We require that the
random variables X1, . . . , Xm are i.i.d, and Xi ∈ [0, 1]. Then, we define f (X1, . . . , Xm) =
1
m

∑m
i=1Xi. Note that because the Xi’s are constrained to be either 0 or 1, changing one

of these values will change the value of f (X1, . . . , Xm) by at most 1
m . So, we set ci = 1

m in
McDiarmid’s Inequality to get the required result.

1While the second inequality was not proven in class, its proof resembles that for the first inequality,
using the random variables 1−X1, . . . , 1−Xm instead of X1, . . . , Xm.

2Hoeffding’s inequality is a special case of the first inequality, using the identity that RE(p+ε ‖ p) ≥ 2ε2.



3 Learning in a Finite Hypothesis Space

Theorem 2. Let |H| < ∞. Given a sample of m points S = 〈x1, . . . , xm〉 from some
distribution D, we have that with probability ≥ 1− δ, ∀h ∈ H,

|err (h)− êrr (h) | ≤ ε

if m ≥ ln 2|H|+ln 1
δ

2ε2
.

Proof. For a fixed hypothesis h ∈ H, Hoeffding’s inequality gives us that Pr [|p̂− p| > ε] ≤
2e−2ε

2m. As we are dealing with a finite hypothesis space, we can use the Union Bound:

Pr [∃h ∈ H : |err (h)− êrr (h) | > ε] ≤ 2|H|e−2ε2m

Setting the RHS to δ gives us that

m = O

(
ln 2|H|+ ln 1

δ

2ε2

)
. (1)

Equivalently, we can say that with probability ≥ 1− δ, ∀h ∈ H,

err (h) ≤ êrr (h) +O

√ ln |H|+ ln 1
δ

m

 . (2)

Note that we dropped the two-sided inequality in favour of the one-sided inequality in (2)
because for our purposes, it suffices to consider only the direction shown here.

We observe the following from the bounds above:

• The error reduces at a rate of O
(

1√
m

)
in (2), compared to a rate of O

(
1
m

)
when

working with consistent hypotheses.

• The amount of data needed in (1) increases from being O
(
1
ε

)
when working with

consistent hypotheses, to O
(

1
ε2

)
. This is reflected in the Relative Entropy version of

the inequality as well — when p is close to 1
2 , RE(p+ ε ‖ p) is close to 1

ε2
; otherwise

it is close to 1
ε when p is close to 0 or 1.

This distinction arises because of the difference in the upper bounds we are using — we
used e−εm in the consistency model, while we use e−2ε

2m in this case.

Now suppose that we were encoding the hypothesis space H by bits. Then, we can re-
place ln |H| in the error bound with |h|. In this scenario, the inequality (2) manages to
capture the three required properties for learning:

• Simplicity versus Complexity: the lower the value of |h|, the lower the generalization
error err (h).

• Large amount of data: the higher the value of m, the lower the error.

• Good fit to the dataset: the lower the training error êrr (h), the lower the generaliza-
tion error.
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Figure 1: Trade-off between complexity and error

We can plot the errors as a function of the complexity of the hypotheses, and get the graph
above3. We can see that increasing the complexity reduces the training error — with more
complex hypotheses, we can fit the training data better. It reduces the generalization error
as well initially; however, we fall prey to overfitting as the complexity increases, causing an
increase in generalization error.

4 Learning in an Infinite Hypothesis Space

In previous lectures, we have used complexity measures such as the growth function and
VC-dimension to help us prove learnability in an infinite hypothesis space. However, we will
now look at a new measure of complexity that subsumes those that we’ve seen previously
— namely, the Rademacher Complexity.

4.1 Rademacher Complexity

We start with a sample of m points S = 〈(x1, y1) , . . . , (xm, ym)〉 where x1, . . . , xm ∈ X and
y1, . . . , ym ∈ {−1, 1}, drawn from some distribution D. Then we can use the training error
to measure how well a fixed hypothesis h fits the training data:

êrr (h) =
1

m

m∑
i=1

1{h (xi) 6= yi}

=
1

m

m∑
i=1

1− yih (xi)

2

=
1

2
− 1

2m

m∑
i=1

yih (xi)

=⇒ 1

m

m∑
i=1

yih (xi) = 1− 2êrr (h)

3Reference: http://www.cs.princeton.edu/courses/archive/spring18/cos511/scribe notes/0305.pdf
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This shows that 1
m

∑m
i=1 yih(xi) can be used as a measure of how well h fits the data set,

and that this measure is equivalent to training error.
As the best hypothesis in H minimizes êrr (h), we can measure how well the entire

hypothesis space H fits the sample using

max
h∈H

1

m

m∑
i=1

yih (xi) .

Now, consider the following experiment: suppose the labels yi are given at random. We are

interested in finding how well H will fit pure noise. Formally, we replace the labels yi with
independent random variables σi (also known as Rademacher random variables) such that

σi =

{
1 with probability 0.5
−1 with probability 0.5.

Define

R = Eσ

[
max
h∈H

1

m

m∑
i=1

σih (xi)

]
.

Intuitively, we can see that if a hypothesis class is rich enough, then it is more likely to fit
the random labels, and hence, have a higher value of R. However, this also exposes us to
the dangers of overfitting the given sample.

Let us consider some extreme cases to check for the values of R:

• Suppose H = {h}. Then

R = Eσ

[
max
h∈H

1

m

m∑
i=1

σih (xi)

]

= Eσ

[
1

m

m∑
i=1

σih (xi)

]

=
1

m

m∑
i=1

h (xi)Eσ [σi]

= 0

This is the minimum possible value of R as E [maxf f ] ≥ maxf E [f ] (by the argument
given last lecture) — so R can never be negative.

• Suppose S is shattered by H. Then, we know that for any labelling σ, there exists a
hypothesis h ∈ H such that h (xi) = σi for i = 1, . . . ,m. In this case, R = 1. This is
the maximum value R can take.

We will study these topics in a more general and abstract setting. Assume now that we have
a family F of real-valued functions where f : Z −→ R for some set Z. Let S = 〈z1, . . . , zm〉
where z1, . . . , zm ∈ Z are independently drawn from some distribution D. We define the
empirical Rademacher Complexity as

R̂S (F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif (zi)

]
.
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Note that we are now using the supremum (the least upper bound) instead of the maximum
in our definition, and that the empirical Rademacher Complexity is defined with respect to
a particular sample S. Similarly, we define the expected Rademacher Complexity as

Rm (F) = ES
[
R̂S (F)

]
.

We want to prove that ∀f ∈ F , 1
m

∑m
i=1 f (zi) −→ Ez∼D [f (z)] with high probability. We will

make use of the shorthand ÊS [f ] = 1
m

∑m
i=1 f (zi) and E [f ] = Ez∼D [f (z)].

Theorem 3. Let F be a family of functions f : Z −→ [0, 1], and suppose S = 〈z1, . . . , zm〉
where zi ∼ D. Then, with probability ≥ 1− δ

∀f ∈ F : E [f ] ≤ ÊS [f ] + 2Rm (F) +O

√ ln 1
δ

m

 .

In terms of the empirical Rademacher Complexity, we have

∀f ∈ F : E [f ] ≤ ÊS [f ] + 2R̂S (F) +O

√ ln 1
δ

m

 .

Proof. We define

Φ (S) = sup
f∈F

(
E [f ]− ÊS [f ]

)
and see that it suffices to consider a bound for Φ (S), as that would apply for all f ∈ F .
The proof consists of three steps. We will show the first step and introduce the second step,
but the proof will be completed in the next lecture.

Step 1
Φ (S) is a random variable that is cumbersome to work with. We would prefer to use the
constant ES [Φ (S)]. In order to do so, we need to first prove that with probability ≥ 1− δ,

Φ (S) ≤ ES [Φ (S)] +

√
ln 1

δ

m

This inequality can be proven using McDiarmid’s Inequality. However, we need to first
check whether the conditions for McDiarmid’s Inequality are satisfied:

• The inputs to Φ must be independent random variables: As Φ (S) = Φ (z1, . . . , zm),
and z1, . . . , zm are independently distributed from D, this condition is satisifed.

• A change in the input should not change the value of Φ by much: If we change zi for
some i ∈ {1, . . . ,m}, E [f ] does not change. ÊS [f ] = 1

m

∑m
i=1 f (zi), and zi ∈ [0, 1], so

the value of ÊS [f ] changes by at most 1
m , and hence, changes the value of Φ (S) by at

most 1
m . Therefore, setting ci = 1

m in McDiarmid’s Inequality gives us the required
bound.
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Step 2
The term E [f ] is cumbersome to work with as well; we will make use of the double-sampling
trick to help us find a replacement. Suppose S ′ = 〈z′1, . . . , z′m〉 where z′i are independently
chosen from D. We want to replace E [f ] with ÊS′ [f ]. In order to do so, we will prove that

ES [Φ (S)] = ES

[
sup
f∈F

(
E [f ]− ÊS [f ]

)]

≤ ES,S′
[

sup
f∈F

(
ÊS′ [f ]− ÊS [f ]

)]
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