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1 Recap

We had started looking at the case where the data points and labels came in pairs, and were
drawn from some distribution D. Given a sample of i.i.d. random variables Xi,..., X,
with X; € [0,1], we defined p = E[X;] and p = L 3" X; and sought to show that p
converges uniformly to p. To do this, we proved Hoeffding’s Inequality:

Prip>p+e]=Prp<p—¢| < e 2em
and found stricter bounds for these quantities using Relative Entropy ! 2

Prp<p—e¢] < ¢~ RE(p—¢llp)m

2 McDiarmid’s Inequality

We now look at a generalisation of Hoeffding’s Inequality — McDiarmid’s Inequality. While
constructing Hoeffding’s Inequality, we had considered p = % >, X, and had shown that
Iy Xi=p—p=E[X)] =E[LY", X;]. Suppose we now wanted to consider a
general case where we replace p by some function of the sample, f(Xi,...,X,,). Could
we always claim that f(Xy,...,Xm) = E[f (X1,...,X)]? For this to hold, we need a
special property that changing one input to the function f does not change its value by
much. Formally, we assume that Vi,Vzi,..., 2, and o} (where z1,..., 2y, 2} are possible
values for the input variables of the function f)

]f(xl,...,xi,...,xm)—f(:cl,...,wé,...,a:m) | <¢
where ¢; is some constant.

Theorem 1 (McDiarmid’s Inequality). Assume Xi,...,X,, are independent (not neces-
sarily identical) random variables, and f is some function that satisfies the property above.
Then,

2

PrF (X Xon) 2 B (X1 X)) o] S enp (s ).
> i1 6
Hoeffding’s Inequality is a special case of McDiarmid’s Inequality. We require that the
random variables X7,..., X,, are i.i.d, and X; € [0,1]. Then, we define f (X1,...,X) =
L ZZ 1 X;. Note that because the X;’s are constralned to be either 0 or 1, changing one
of these values will change the value of f (X1,...,X,,) by at most 1 . So, we set ¢; = % in
McDiarmid’s Inequality to get the required result.

"While the second inequality was not proven in class, its proof resembles that for the first inequality,
using the random variables 1 — Xi,...,1 — X, instead of X1,..., X;.
?Hoeffding’s inequality is a special case of the first inequality, using the identity that RE(p+e¢ || p) > 2.



3 Learning in a Finite Hypothesis Space

Theorem 2. Let |[H| < oo. Given a sample of m points S = (x1,...,%m) from some
distribution D, we have that with probability > 1 — §,Vh € H,

lerr(h) —err(h)| <e

. In 2|H|+1n 4
ifm > — -

Proof. For a fixed hypothesis h € H, Hoeffding’s inequality gives us that Pr[|p — p| > ¢] <
2e2€°m  Ag we are dealing with a finite hypothesis space, we can use the Union Bound:

Pr[3h e H : |err (h) — et (h) | > €] < 2[H|e 2"

Setting the RHS to § gives us that

1
m:o<m%W+mﬂ. (1)

2e2

Equivalently, we can say that with probability > 1 — §,Vh € H,

] In i
err (h) < & (h) + O wﬂﬂiﬂg_ (2)
m

O

Note that we dropped the two-sided inequality in favour of the one-sided inequality in (2)
because for our purposes, it suffices to consider only the direction shown here.

We observe the following from the bounds above:
e The error reduces at a rate of O <\/—lﬁ) in (2), compared to a rate of O (+) when
working with consistent hypotheses.

e The amount of data needed in (1) increases from being O (%) when working with
consistent hypotheses, to O (8%) This is reflected in the Relative Entropy version of
the inequality as well — when p is close to %, RE(p + ¢ || p) is close to E%; otherwise
it is close to % when p is close to 0 or 1.

This distinction arises because of the difference in the upper bounds we are using — we
—em . . —2e2ym - .
used e ™ in the consistency model, while we use e~2¢"™ in this case.

Now suppose that we were encoding the hypothesis space H by bits. Then, we can re-
place In|H| in the error bound with |k|. In this scenario, the inequality (2) manages to
capture the three required properties for learning;:

e Simplicity versus Complexity: the lower the value of |h|, the lower the generalization
error err (h).

e Large amount of data: the higher the value of m, the lower the error.

e Good fit to the dataset: the lower the training error érr (h), the lower the generaliza-
tion error.
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Figure 1: Trade-off between complexity and error

We can plot the errors as a function of the complexity of the hypotheses, and get the graph
above3. We can see that increasing the complexity reduces the training error — with more
complex hypotheses, we can fit the training data better. It reduces the generalization error
as well initially; however, we fall prey to overfitting as the complexity increases, causing an
increase in generalization error.

4 Learning in an Infinite Hypothesis Space

In previous lectures, we have used complexity measures such as the growth function and
VC-dimension to help us prove learnability in an infinite hypothesis space. However, we will
now look at a new measure of complexity that subsumes those that we’ve seen previously
— namely, the Rademacher Complexity.

4.1 Rademacher Complexity

We start with a sample of m points S = ((z1,y1) .-, (Tm, Ym)) Where z1, ..., 2, € X and
Yiy .- Ym € {—1,1}, drawn from some distribution D. Then we can use the training error
to measure how well a fixed hypothesis h fits the training data:

G () = > 1 {h () # vi)
=1

1 — _
- h(z;) =1 — 261 (h
= () =1 -2 ()

3Reference: http://www.cs.princeton.edu/courses/archive/spring18/cos511/scribe_notes/0305.pdf



This shows that = >, y;h(z;) can be used as a measure of how well & fits the data set,
and that this measure is equivalent to training error.

As the best hypothesis in A minimizes err (h), we can measure how well the entire
hypothesis space H fits the sample using

maX—Zyl x;) .
heH m

Now, consider the following experiment: suppose the labels y; are given at random. We are

interested in finding how well H will fit pure noise. Formally, we replace the labels y; with
independent random variables o; (also known as Rademacher random variables) such that

o — 1 with probability 0.5
‘1 =1  with probability 0.5.

Define

R=E —

o [I}?Ea,ff m Z oih xz
Intuitively, we can see that if a hypothesis class is rich enough, then it is more likely to fit
the random labels, and hence, have a higher value of R. However, this also exposes us to

the dangers of overfitting the given sample.

Let us consider some extreme cases to check for the values of R:

e Suppose H = {h}. Then
R =E, |ma ! gm h(x;)
X — i i
ner m 2=l

I
=

=1

1 m
= 2 h(@)
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This is the minimum possible value of R as [E [maxy f] > maxy E [f] (by the argument
given last lecture) — so R can never be negative.

e Suppose S is shattered by H. Then, we know that for any labelling o, there exists a
hypothesis h € H such that h (z;) = o; for i = 1,...,m. In this case, R = 1. This is
the maximum value R can take.

We will study these topics in a more general and abstract setting. Assume now that we have
a family F of real-valued functions where f : Z — R for some set Z. Let S = (2z1,..., 2m)
where z1,...,2, € Z are independently drawn from some distribution D. We define the
empirical Rademacher Complexity as

RS(F): o

a3 ]

ferms



Note that we are now using the supremum (the least upper bound) instead of the maximum
in our definition, and that the empirical Rademacher Complexity is defined with respect to
a particular sample S. Similarly, we define the expected Rademacher Complexity as

Ron (F) = Es [7%3 (f)} .

We want to prove that Vf € F, L 3" f(2;) — E.p [f (z)] with high probability. We will
make use of the shorthand Eg [f] = L 327, f (%) and E [f] = E.up [f (2)].

~m
Theorem 3. Let F be a family of functions f : Z — [0,1], and suppose S = (21, ..., 2m)
where z; ~ D. Then, with probability > 1 — §

. In %
VieF: E[f]<Es[f]+2Rm(F)+0O g
In terms of the empirical Rademacher Complexity, we have
. ~ In %
VfeF: E[f]<Es[f]+2Rs(F)+0O |/

Proof. We define
@ (8) = sup (E[f] - Es /)

feFr
and see that it suffices to consider a bound for ® (S), as that would apply for all f € F.
The proof consists of three steps. We will show the first step and introduce the second step,
but the proof will be completed in the next lecture.

Step 1
® (S) is a random variable that is cumbersome to work with. We would prefer to use the
constant Eg [® (S5)]. In order to do so, we need to first prove that with probability > 1 — 4,

In %
O (S)<Eg[®(S)]+1—2
m
This inequality can be proven using McDiarmid’s Inequality. However, we need to first
check whether the conditions for McDiarmid’s Inequality are satisfied:

e The inputs to ® must be independent random variables: As ® (S) = @ (21,...,2m),
and z1,..., 2, are independently distributed from D, this condition is satisifed.

e A change in the input should not change the value of ® by much: If we change z; for
some i € {1,...,m}, E[f] does not change. Es[f] = L Y7 f(#), and z; € [0,1], so

“m
the value of Eg [f] changes by at most %, and hence, changes the value of ® (S) by at
most % Therefore, setting ¢; = % in McDiarmid’s Inequality gives us the required

bound.



Step 2

The term E [f] is cumbersome to work with as well; we will make use of the double-sampling

trick to help us find a replacement. Suppose S’ = (21, ..., z,) where z/ are independently

chosen from D. We want to replace E [f] with Eg [f]. In order to do so, we will prove that

Es[®(5)] = Es ;161.17-)' (E [f] - Es [f])]
<Es.s ?3% (I@s’ [f] — Es [f])]




