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1 Review

So far, we have been assuming that the true target is from some target class. We will
transition to a general case: you might not be able to find a consistent hypothesis.

Here is the new setup:
Data points and labels come in pairs. (x, y) is generated from some underlying distri-

bution D, where x ∈ X, y ∈ {0, 1}. We could also view the data generalization process as a
two-step process: it first generates x, it then assigns a label y to x according to some proba-
bility distribution conditioned on x, as reflected in the formula, Pr(x, y) = Pr(x) ·Pr(y|x).

2 Generalizing PAC Learning

The generalization error of a hypothesis h under our new framework is

errD(h) = Pr(x,y)∼D[h(x) 6= y].

2.1 Bayes Optimal Decision Rule

To better understand the new notion of error, consider the setting where we have the luxury
of working with all possible hypotheses h. How low can our error be?

As a toy problem, consider flipping a coin that lands on heads with probability p and
lands on tails with probability 1− p. If we want to predict the outcome correctly as often
as possible, the optimal prediction rule would be:{

heads, if p > 1
2

tails, if p < 1
2

(1)

It doesn’t matter whether we predict heads or tails if p = 1
2 .

By the same reasoning applied to each x separately, when trying to classify x, the
optimal decision rule is:

hopt(x) =

{
1, if PrD[y = 1|x] > 1

2

0, if PrD[y = 1|x] < 1
2

(2)

It doesn’t matter what we predict if PrD[y = 1|x] = 1
2 .

This is known as the Bayes optimal decision rule, and its error is known as the Bayes
error, defined as err(hopt) = minall h errD(h). The Bayes error is typically strictly larger
than 0, which implies that even if we know everything about the distribution that generates
data and label pairs (x, y), we still cannot make perfect predictions.



2.2 PAC Learning in the New Model

The Bayes error helps facilitate our understanding of the new notion of error, but in Bayes
error, we had the luxury of working with all possible hypotheses. In the real world, however,
we can typically only work with a limited hypothesis space,H, and consider minh∈H errD(h).

We will consider a very natural approach to PAC learning in this new framework. Choose
a sample S = 〈(x1, y1), (x2, y2), . . . , (xm, ym)〉 where each (xi, yi) is generated i.i.d. from
some underlying distribution D. We will define the training error or empirical error of a
hypothesis h as:

ˆerr(h) =
1

m

m∑
i=1

{
1, if h(xi) 6= yi

0, otherwise
=

1

m

m∑
i=1

1{h(xi) 6= yi} (3)

where 1{h(xi) 6= yi} is an indicator variable that is 1 if h(xi) 6= yi and 0 otherwise.
Our goal is to find a hypothesis h whose generalization error is almost as good as the

generalization error of the best hypothesis in the hypothesis spaceH, and a natural approach
is to pick the hypothesis ĥ with the lowest training error. That is, ĥ = argminh∈H ˆerr(h).

Suppose we can show that with probablility at least 1− δ, on a single random sample,
for every h ∈ H, | ˆerr(h)− errD(h)| ≤ ε. That is,

Pr[∀h ∈ H: | ˆerr(h)− errD(h)| ≤ ε] ≥ 1− δ.

This is known as the uniform convergence property. If we can prove such a result, then we
will have that:

err(ĥ) ≤ ˆerr(ĥ) + ε By Assumption

≤ ˆerr(h) + ε ĥ = argminh∈H ˆerr(h)

≤ err(h) + 2ε By Assumption

(4)

Thus, since this is true for every h ∈ H, the generalization error of ĥ is within 2ε of the
best hypothesis in the hypothesis space if the uniform convergence property holds.

The next natural goal will be to prove the uniform convergence property. As a first step,
we will prove convergence of the training error for a single hypothesis. In the process, we
will prove useful Chernoff bounds including Hoeffding’s Inequality, and we will also discuss
relative entropy (KL-divergence).

3 Convergence for a Single Hypothesis

We will first consider the question that, given a single hypothesis h, how can we prove that
with high probability the training error of h is close to the generalization error of h?

The indicator function 1{h(xi) 6= yi} is 1 with probability err(h) and is 0 with prob-
ability 1 − err(h). We can thus think of 1{h(xi) 6= yi} as a coin flip that is heads with
probability err(h) and tails with probability 1− err(h). In this view, the training error is
the fraction of times that the coin comes up heads in m flips, and our goal is to prove that
this empirical estimate of the bias converges rapidly to the actual bias of the coin.

To study this, we consider the abstract setting in which there are m i.i.d. random
variables X1, X2, . . . , Xm where Xi ∈ [0, 1], each with mean p = E[Xi], and we want to
show that their empirical average p̂ = 1

m

∑m
i=1Xi converges rapidly to p. Our aim will be

to show that Pr[p̂ ≥ p+ε] goes to zero, which implies that p̂ converges to p. In our particular
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setting, we would then choose Xi = 1{h(xi) 6= yi} so that p = err(h) and p̂ = ˆerr(h), which
would let us conclude that the training error of h converges to its generalization error.

3.1 Kullback-Leibler Divergence

We will first discuss a concept known as the Kullback-Leibler Divergence or relative entropy,
which will be central to the result that follows.

The notion of Kullback-Leibler divergence comes from information theory. Consider the
simple setting that Alice wants to send Bob a letter of the alphabet, but she needs to send
the letter in binary. A naive way is to use 5 bits to represent each letter. However, some
letters in English appear much more frequently than others, so it will be better to encode
a frequently appearing letter (like “a” and “e”) with fewer bits, and less frequent letters
(like “q”) with more bits. More generally, let x denote a message, let X denote the space of
messages, and suppose P (x) is the probability of a message x appearing. It turns out that
the optimal number of bits to encode x is lg( 1

P (x)) (the lg here indicates logorithm base 2).
So the expected length of an encoded message is:∑

x∈X
P (x) · lg

(
1

P (x)

)
(5)

This is known as the entropy of distribution P . It measures how speard out the distribution
is (the more spread the distribution is, the longer the expected length of the encoded
messages).

Suppose that Alice and Bob mistakenly think that the distribution of the message is

Q, so that they instead use lg
(

1
Q(x)

)
bits to encode message x. If they make this mistake,

the expected message length will be
∑

x∈X P (x) · lg
(

1
Q(x)

)
. We can compare this to the

optimal expected message length (i.e. the entropy); the difference is:

∑
x∈X

P (x) · lg
(

1

Q(x)

)
−
∑
x∈X

P (x) · lg
(

1

P (x)

)
=
∑
x∈X

P (x) lg

(
P (x)

Q(x)

) (6)

This is known as the KL-divergence or the relative entropy, written as RE(P ||Q). This is
a way to measure the difference between distribution P and Q. Note that RE(P ||Q) ≥ 0
and RE(P ||Q) = 0 if and only if P = Q. However, the relative entropy is not a distance
because it is not symmetric, that is, RE(P ||Q) 6= RE(Q||P ). When we are dealing with a
distribution over two outcomes(like a coin flip), we use the notation RE(p||q) as shorthand
for RE((p, 1− p)||(q, 1− q)).

Also, we used log base-2 above since we wanted to measure coding length in bits. But
henceforth, we will switch to measuring entropy and relative entropy using the natural
logarithm which is mathematically more convenient. The definitions are exactly the same,
except lg is replaced by ln.

3.2 Hoeffding’s Inequality

In order to prove the convergence for a single hypothesis, we will prove a useful Chernoff
bound, called Hoeffding’s inequality:
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Pr[p̂ ≥ p+ ε] ≤ e−2ε2m

Pr[p̂ ≤ p− ε] ≤ e−2ε2m
(7)

Once we prove Hoeffding’s Inequality, we can apply the union bound to the two in-
equalities above to get Pr[|p̂ − p| ≥ ε] ≤ 2e−2ε

2m. Setting 2e−2ε
2m = δ, we will be able to

prove the convergence result for a single hypothesis. That is, with probability at least 1−δ,

| ˆerr(h)− err(h)| ≤
√

ln( 2
δ
)

2m .
It turns out that Hoeffding’s Inequality is just a special case of an even better bound.

Givenm i.i.d. random variablesX1, X2, · · · , Xm withXi ∈ [0, 1], p = E[Xi], p̂ = 1
m

∑m
i=1Xi,

and ε > 0:

Pr[p̂ ≥ p+ ε] ≤ e−RE(p+ε||p)·m

Pr[p̂ ≤ p− ε] ≤ e−RE(p−ε||p)·m (8)

We will prove this bound using a very weak inequality, called Markov’s inequality, which
states that given a nonnegative random variable X, Pr[X ≥ t] ≤ E[X]

t . The proof of
Markov’s inequality is the following:

E[X] = Pr[X ≥ t] · E[X|X ≥ t] + Pr[X < t] · E[X|X < t] (9)

Since

Pr[X < t] ≥ 0

E[X|X < t] ≥ 0

E[X|X ≥ t] ≥ t
E[X] ≥ Pr[X ≥ t] · E[X|X ≥ t] ≥ Pr[X ≥ t] · t

(10)

We get Pr[X ≥ t] ≤ E[X]
t .

We will now proceed to prove the first bound in (8). Let q = p + ε. Our goal is to get
a bound on Pr[p̂ ≥ q]. If f is a strictly increasing function, then p̂ ≥ q ⇔ f(p̂) ≥ f(q).
Let f(x) = eλmx, where λ > 0 will be chosen later. Note that f(x) is a strictly increasing
function.

Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq]
≤ e−λmqE[eλmp̂] By Markov’s Inequality

(11)

We will now compute E[eλmp̂].

E[eλmp̂] = E[eλ
∑m
i=1Xi ]

= E[

m∏
i=1

eλXi ]

=

m∏
i=1

E[eλXi ] Since Xi’s are independent

(12)

Next, we will use an inequality: if 0 ≤ x ≤ 1, then eλx ≤ 1− x + x · eλ. Figure 1 is an
illustration of this inequality for λ = 1.
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Figure 1: if 0 ≤ x ≤ 1, then eλx ≤ 1− x+ x · eλ for λ = 1

E[eλmp̂] =
m∏
i=1

E[eλXi ]

≤
m∏
i=1

E[1−Xi +Xi · eλ]

=
m∏
i=1

[1− p+ p · eλ] E[Xi] = p

= [1− p+ p · eλ]m

(13)

Combining (11) and (13), which gives:

Pr[p̂ ≥ q] ≤ e−λmqE[eλmp̂]

≤ e−λmq[1− p+ p · eλ]m

= [e−λq(1− p+ p · eλ)]m

(14)

The above bound holds for all λ > 0. To find the value of λ that gives the best bound, we

differentiate [e−λq(1−p+p·eλ)]m and set the derivative to 0, which gives λmin = ln
(
q(1−p)
p(1−q)

)
.

Plugging λmin into [e−λq(1− p+ p · eλ)]m, we get e−RE(q||p)·m. Since q = p+ ε, we get

Pr[p̂ ≥ p+ ε] ≤ e−RE(p+ε||p)·m (15)

We have thus proven the bound in (8).
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