
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #7
Scribe: Shaowei Zhu February 25, 2019

1 Sauer’s Lemma

Sauer’s lemma gives a way to bound the growth function using VC-dimension, enabling us
to calculate how many training examples do we need in the PAC-learning setting when we
are trying to learn an infinite hypothesis class.

Theorem 1 (Sauer’s Lemma). Denote the hypothesis space by H. Let d = VCdim(H).
Then the growth function for a set of m points satisfies

ΠH(m) ≤
d∑

i=0

(
m

i

)
= Φd(m) (1)

Proof. Continue from where we left off in the previous lecture, we are proving this by
induction on m+ d. Let S = 〈x1, . . . , xm〉 be any sequence of m examples. For illustration,
we will consider the following set S consisting of m = 5 examples. The leftmost column
contains all possible labelings of S given by some hypothesis class H.

Let S′ = 〈x1, . . . , xm−1〉 be the sequence obtained from S by throwing away xm. We
define two new spaces of hypothesesH1 andH2. Formally, these spaces consist of hypotheses
defined on the domain X ′ = {x1, . . . , xm−1}, but we will focus on their labelings on the set
S′. If H induces two labelings of S with their first (m − 1) bits being the same in the
leftmost column (like 01100 and 01101), then this string of (m− 1) bits goes into the set of
possible labelings realized by both H1 and H2. Otherwise for those labelings in H that have
the first (m − 1) bits being unique (appearing as part of a labeling only once, like 0111),
those first (m− 1) bits go into only the set of possible labelings realized by H1 but not H2.
See the example.

ΠH(S) H1 = ΠH1(S′) H2 = ΠH2(S′)

01100
0110 0110

01101

01110 0111

10010
1001 1001

10011

11001 1100
We have proved the following two claims in the previous lecture:
Claim 1. |ΠH(S)| = |H1|+ |H2|.
Claim 2. VCdim(H1) ≤ d. Thus |H1| = |ΠH1(S′)| ≤ Φd(m−1) by inductive hypothesis.

Here we can use the inductive hypothesis since we have reduced the size of the point set to
m− 1 while keeping VC-dimension the same.

Now we want to prove this third claim:
Claim 3. VCdim(H2) ≤ d− 1.
Suppose that VCdim(H2) = t. Suppose that a set T containing t examples is shattered

by H2. We now create a set T ′ = T ∪ {xm}, by adding the example xm to T . We want to
argue next that T ′ is shattered by H.

By definition of shattering, H2 could realize all possible labelings for the t examples in
T . For each labeling it realizes, we create two new labelings by appending a 0 and a 1 to
it, respectively. Let this set of new labelings be L′. L′ must include all possible labelings
for the (t+ 1) examples in T ′, since the last example could only be given 0 or 1. Thus we
only need to show that H could realize all of L′.

From the definition of H2, we could see that for every labeling s realized by H2, H can
realize two labelings s0 and s1. These two labelings agree with s on any example but xm.
Therefore, H can realize all of L′ since L′ is obtained from appending 0 or 1 to all labelings
of T realized by H2. In other words, H could realize all possible labelings for this set T ′ of
(t+ 1) examples. Thus VCdim(H) ≥ t+ 1 = VCdim(H2) + 1.

From Claim 3 we use our inductive hypothesis and get

|H2| = |ΠH2(S′)| ≤ Φd−1(m− 1) (2)

Using the three claims we proved above and the recurrence property of binomial coeffi-
cients (introduced in the previous lecture), we get

|ΠH(S)| = |H1|+ |H2| (3)

≤
d∑

i=0

(
m− 1

i

)
+

d−1∑
i=0

(
m− 1

i

)
(4)

=

d∑
i=0

(
m− 1

i

)
+

d∑
i=1

(
m− 1

i− 1

)
(5)

=
d∑

i=0

(
m− 1

i

)
+

d∑
i=0

(
m− 1

i− 1

)
(6)

=
d∑

i=0

[(
m− 1

i

)
+

(
m− 1

i− 1

)]
(7)

=
d∑

i=0

(
m

i

)
(8)

= Φd(m) (9)

The following fact is a more exact bound for Φd(m) other than O(md). Its proof could
be found in the textbook.

Lemma 1 (An estimation for Φd(m)). If m ≥ d ≥ 1 then

Φd(m) ≤
(em
d

)d
(10)

2 Lower bound on number of examples for PAC-learnability

In the last lecture we have shown that having roughly O(d) examples is a sufficient condition
for PAC-learning where d is the VC-dimension of the hypothesis class. Here we want to

2

argue that having Ω(d) examples is also a necessary condition for PAC-learnability (or PAC
learning is not possible when you have less than O(d) examples).

Intuitively, if the target concept can be very complex, then having very few examples
could reveal very little about the nature of the target concept. In this case, knowing
how the concept labels a portion of the domain could be of little help when we want to
predict how the concept labels other portions of the domain, since the concept is complex
enough to potentially label other portions in an arbitrarily complex way. Thus whatever
learning algorithm you use or whatever hypothesis you use, there is a great chance for it
to generalize poorly outside of the training examples, due to the complex nature of the
underlying concept.

The above arguments hint that we should focus on the complexity of the concept class
when trying to deduce a lower bound. We could slightly formalize the thoughts above as a
concrete example. Let d = VCdim(C), where C is the concept class that contains the target
concept. Then there must exist a set {z1, z2, . . . , zd} that is shattered by C. If we only get
to see how c ∈ C labels some of these points, it is impossible for us to infer how c labels
other points, since all possible labelings could be realized by C. We will try to formalize
this intuition for the rest of this section.

The following statement and “proof” is a first (failed) attempt that tries to establish a
lower bound for PAC-learnability.

Statement 1 (Lower bound of examples necessary for PAC-learnability, first attempt). For
any learning algorithm A that learns the concept class C, if given too few examples m ≤ d/2,
then err(hA) > 1/8.

Proof. Attention: this proof is incorrect! Let D be the uniform distribution on z1, . . . , zd.
Run algorithm A with sample set S consisting of m ≤ d/2 examples that have been labeled
arbitrarily and obtain hA.

Let c ∈ C be a concept that is consistent with S and their labels, but c(x) 6= hA(x) for
any x /∈ S. Obviously, hA will be incorrect on every x outside of S, and thus err(hA) ≥ 1/2
since the training set S covers no more than half of the distribution.

The proof above is completely wrong, because in the PAC learning setting the concept
c has to be fixed before we select the training set and their labels. We have to be more
careful when formulating the theorem and the proof.

Theorem 2 (Lower bound of examples necessary for PAC-learnability). Suppose that
VCdim(C) = d. For any learning algorithm A, there exists a target concept c ∈ C and
distribution D such that if A only gets random sample set S of size m ≤ d/2, then

Pr
S

[
errD(hA) >

1

8

]
≥ 1

8
(11)

We could compare this with the usual PAC learning criterion, which says if we have a
sufficient amount of examples m then we could bound the probability for obtaining a bad
hA. This theorem says that if m is not large enough, then the probability for you to obtain a
bad hA will be larger than some constant. More intuitively, for any PAC-learning algorithm
for C, if ε ≤ 1/8 and δ ≤ 1/8, then the algorithm requires at least d/2 training examples.

Proof. Let C′ be a set of concepts that contains one representative for each labeling of the
shattered set {z1, . . . , zd}. By doing this we obtain a finite concept class which satisfies
|C′| = 2d that is easier to work with.

3

Let D be uniform distribution on z1, . . . , zd. Choose c uniformly at random from C′.
Draw S according to D and label every example in S according to c.

Suppose that A is a deterministic algorithm that gives us hA, after seeing S. Now
consider the probability for hA to be incorrect on a random point x drawn according to D
(the variables under the Pr symbol indicate what is the probability over; note that there is
randomness in selecting c, S, x):

Pr
c,S,x

[hA(x) 6= c(x)] (12)

≥ Pr
c,S,x

[hA(x) 6= c(x) ∧ x /∈ S] (13)

= Pr
c,S,x

[x /∈ S] · Pr
c,S,x

[hA(x) 6= c(x) | x /∈ S] (14)

≥ 1

2
· 1

2
=

1

4
(15)

Here we arrive at Equation 13 by the implication law in probability (if A ⇒ B then
Pr(A) ≤ Pr(B)). We obtain Equation 15 since Prc,S,x[x /∈ S] ≤ 1/2 (when selecting x there
are d examples to choose from and S has less than d/2 examples) and Prc,S,x[hA(x) 6= c(x) |
x /∈ S] = 1/2. This latter equation deserves a little more explanation. hA(x) does depend
on x, the samples in S, and their labels, but it does not depend on c(x) when conditioned
on x /∈ S because the only x and c(x) seen by A are those in S. Therefore, the random
variable c(x) is independent of hA(x) when conditioned on x /∈ S. And since the label c(x)
is chosen uniformly at random from {0, 1}, the chance that it agrees with hA(x) is exactly
1/2.

We have obtained that

E
c

[
Pr
S,x

[hA(x) 6= c(x)]

]
= Pr

c,S,x
[hA(x) 6= c(x)] ≥ 1

4
. (16)

Thus there exists c ∈ C such that

1

4
≤ Pr

S,x
[hA(x) 6= c(x)] (17)

= E
S

[
Pr
x

[hA(x) 6= c(x)]
]

(18)

= E
S

[errD(hA)] (19)

= Pr
S

[
errD(hA) >

1

8

]
E
S

[
errD(hA) | errD(hA) >

1

8

]
+ Pr

S

[
errD(hA) ≤ 1

8

]
E
S

[
errD(hA) | errD(hA) ≤ 1

8

]
(20)

≤ Pr
S

[
errD(hA) >

1

8

]
· 1 + 1 · E

S

[
errD(hA) | errD(hA) ≤ 1

8

]
(21)

≤ Pr
S

[
errD(hA) >

1

8

]
+

1

8
(22)

Hence PrS
[
errD(hA) > 1

8

]
≥ 1

4 −
1
8 = 1

8 .

3 What if there is no consistent hypothesis?

So far we have been focusing on learning when we can find a hypothesis that is consistent
with the training examples. What if we cannot find one? Several things could be preventing
us from finding the consistent hypothesis here:

4

1. The hypothesis class H might not capture all of the concept class C. Thus for some
c ∈ C there is no satisfactory hypothesis.

2. There is no computationally efficient algorithm that can find a consistent hypothesis.

3. Maybe there is no functional relationship between instances and their labels (e.g.,
there is noise or other random factors involved when labels are generated).

In order to discuss learning under the non-consistent setting, we need to generalize our
notions a little bit: suppose that every training and test example (x, y) is drawn from a
joint distribution X × {0, 1}. We could also view the process that generates data as a two-
step process: it first chooses x according to some distribution, and then it assigns a label
y to x according to some other distribution conditioned on x, as reflected by the formula
Pr [(x, y)] = Pr [x] · Pr [y | x].

5

