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1 Recap from last time

In this lecture, we are going to finish the proof of the theorem that we began last time.

Theorem 1. With probability at least 1 — §, for every h € H if h is consistent with m
ln(HH(Qm))+ln(1/6)> '

m

random training examples then err(h) <€, where e = O (

Recall how we went about proving this theorem. We first applied the double sample
trick, by considering, along with the original sample S, a second, “ghost” sample S’ which
also contains m elements. Thus, together S and S’ consist of 2m iid random variables.
Then, these two samples were randomly permuted into samples T and T”, correspondingly.

We then defined M (h,S) as the number of mistakes that h makes on S and considered
three events:

B:3heH:M(h,S)=0ANerr(h) >e¢
B :3heH:M(h,S)=0AM(,S") >

S ENIE

B":3h e : M(h,T)=0AMMh,T) >

Additionally, the event that M (h,T) = 0AM (h,T") > 5 for a particular hypothesis h was
denoted b(h).

The driving idea behind the proof of Theorem 1 is that all we need to do in order to see
how a consistent (on S) hypothesis h generalizes, is to look at combinatorial properties of
the entire hypothesis space H. Thus, we defined the growth function of a hypothesis space
as

My (m) i= ma [ ()]
IS|=m
where

() == {(h(x1), ..., h(zm)) : h € H}.

To apply this measure in the context of our proof, we needed to restrict our attention to
how h behaves on a finite set of points, namely, the 2m iid random variables from the two
samples S, 5.

Then the proof of Theorem 1 proceeded in steps. We covered the following ones last
time:

e Step 2: Pr(B| < 2Pr[B/|
e Step 3: Pr[B'| = Pr[B"]

e Step 4: Fix h, S, S’. Then, Pr[b(h)|S,S"] < 27™¢/2,



2 Finishing the proof of Theorem 1

Now, we finish proving the theorem.

Step 5: Fix S,S’. Then Pr[B"|S, '] < Iy (2m) - 27™</2,

We have set everything up so that in order to study the error of a consistent hypothesis h,
we are only working with the samples S, S’ rather than the entire underlying space. At this
point, recall that the hypotheses from the space H exhibit |I13(S;S")| possible behaviours
on combined samples S and S’. Imagine picking |IIy(.S; S”)| hypotheses out of H, one per
each possible behaviour on the samples S and S’ combined. Thus, let

H' := {one representative hypothesis from # for every labelling on S, S'}.

Then
[H'| = [Ty(S; 8')| < My (2m).

Observe that b(h) only depends on the behaviour of h on S and S’; and does not depend
on how h labels the rest of the space. This justifies the second equality in the following
chain:

Pr(B"|S,S'] = Pr[3h € H : b(h)|S, 5]
= Pr[3h e H' : b(h)|S, 9]

< ) Prip(h)|S, 8]
heH’

< ‘Hl‘2fme/2
< Ty (2m) - 2772,
The first inequality is due to the union bound. This concludes the proof of Step 5.
Step 6: Pr[B"] < Iy /(2m) - 27™</2,
The proof here relies on marginalization. By this, we mean in the present context the
following special case of the Tower Property of expectations. Let a be an event and X a

random variable. Then
Prla] = Ex[Pr[a| X]].

Applying this property, and then using Step 5, we see that
Pr[B"] = Eg/[Pr[B"|S, 8] < y/(2m) - 27™¢/2,
Bringing Steps 1-6 together: We observe that
Pr|B] < 2Pr|B'] = 2Pr[B"] < 211y (2m) - 27™</2,

Here, the transitions hold due to Step 2, Step 3, and Step 6, respectively.
Picking

€= %(lg T (2m) +1g1/6 + 1) = O (ID(HH@m)) + 1n(1/5)) |

m

we have, as a consequence of Pr[B] < 2ITy(2m) - 272, that Pr[B] < §, which concludes
the proof of the theorem.



3 The Vapnik-Chervonenkis (VC) dimension

The bound on the true error of a consistent hypothesis given in Theorem 1 reflects the
complexity of the hypothesis space H in terms of the logarithm of its growth function
evaluated at 2m, namely, In(Ily(2m)). However, due to the purely combinatorial nature of
the growth function ITy(+), its asymptotic behaviour is far from obvious. Once we can get
hold of it, the bound in Theorem 1 will become much more useful. A very important concept
that captures the intrinsic complexity of a hypothesis space is the so-called VC-dimension.
It will help us study the behaviour of the growth function. We begin our discussion of the
VC-dimension with an auxiliary definition.

Definition 2. A sample S of size m 1is shattered by H if the hypotheses from H realize all
possible labellings of S. That is, |1y (S)| = 2™.

For example, if we consider H = {intervals on the real line}, then clearly H shatters any
subset of R of size 1 or 2. Indeed, H shatters any single point since depending on whether
that point is labelled + or —, we can find an interval that, respectively, includes or does
not include that point. And H shatters any two points. Indeed, suppose the points are
x1 and x2. Then the labelling —, — is realized by any interval that excludes both points,
the labelling 4+, + is realized by any interval containing both points, and the labelling +, —
(—, + respectively) corresponds to any interval that only contains x; (z2 respectively).

Definition 3. The Vapnik-Chervonenkis (VC) dimension VCdim(H) of a hypothesis set
‘H is the cardinality of the largest set shattered by H.

Continuing the previous example of H = {intervals on the real line}, we see that #H has
VC-dimension 2. Indeed, we have shown that H shatters sets of 2 points. Thus, to prove
that the VC-dimension of H is equal to 2, it suffices to show that H does not shatter any
set of 3 points (why?). Consider any points x1 < x9 < z3 labelled as follows: + — +. Then
any interval that contains both z; and x3 must contain xo. Therefore, it is impossible to
find an interval that labels x1 and x3 as + and x9 as —. Therefore, we have shown for an
arbitrary set of 3 points that not all labellings are realizable by hypotheses from H. This
proves our claim.

+ + + +

+ + - -

Figure 1: [Mohri et al. textbook, 2nd edition, 2018, pg. 39] A diamond-shaped set in R?
and some of its possible labellings, along with the axis-aligned rectangles that realize them.

To work out yet another example, consider H = {2d axis-aligned rectangles}. We claim
that VCdim(H) = 4.

e First, VCdim(H) > 4 because it can be easily seen that e.g. for a “diamond-shaped”
set of 4 points in R? (see Figure 1), there is an axis-aligned rectangle for every possible
labelling of these points.



e Second, to show that VCdim(H) < 4 we need to prove that for any arrangement
of 5 points in R?, there is a labelling that no axis-aligned rectangle can realize. To
sketch the proof of this, consider any 5 points z1,...,z5 in R?. Choose a top-most,
a bottom-most, a left-most, and a right-most point from among these points. Some
of the chosen points may be equal, e.g. if one of the points is the top-most and also
the left-most point, but in total we will have chosen at most 4 points. Since we have
5 points in total, there will be at least one “leftover” point. Now, label the chosen
points as + and the leftover points as —. No axis-aligned rectangle can both contain
the chosen points and exclude the leftover points. Hence, no set of 5 points is shattered
by H, proving our claim.

In general, it can be shown that VCdim({hyper-rectangles in R"}) = 2n. See the
textbook for more details.

Finally, there is a very important hypothesis set whose VC-dimension we want to de-
scribe.

Definition 4. A linear threshold function h(-) in R™ with parameters w € R™ b € R is
1, ifw-x>0
defined as h(x) = { wex2

0, otherwise

Any hyperplane of the form w-x = b gives rise to a split of the space R™ into two halves,
and points are classified as + or — depending on which of the two half-spaces they belong
to.

Lemma 5. The hypothesis set H = {linear threshold functions in R"} has VCdim(H) =
n + 1. Furthermore, the VC-dimension of the set of linear threshold functions in R™ that
are based on hyperplanes that go through the origin, that is, where b =0, s equal to n.

For the proof of this lemma, consult the textbook.

Remark 1. As seen from the previous examples, it is often the case that the VC-
dimension of a hypothesis set H is the same as the number of parameters that are needed
to define H. In particular, intervals in R are given by their two ends, and the VC-dimension
is 2. Axis-aligned rectangles are given by their 4 corners, and the VC-dimension is 4. Linear
threshold functions in R™ have n+1 parameters (n coordinates of w and the one-dimensional
b), and this is the same as their VC-dimension. Moreover, setting b = 0 reduces the effective
number of parameters by 1, and accordingly the VC-dimension reduces to n. However, this
is not always the case. For instance, there exist single-parameter environments whose VC-
dimension is oo.

Remark 2. An interesting question is that of the relation between VCdim(H) and
lg|#| for finite hypothesis spaces. We would like to note the property that VCdim(H) <
lg|#/| in that case. Indeed, VCdim(H) = d holds only if there is a set of d examples that is
shattered by H. This implies, however, that there are at least 2¢ hypotheses in #, at least
one per labelling of the d examples. So |H| > 2¢, and taking logs gives the above inequality.

4 Sauer’s lemma

We begin the proof of the following result.



Theorem 6 (Sauer’s lemma). Let H be a hypothesis space, d = VCdim(H). Then

My(m) < io (m>

This theorem has a very surprising and far-reaching consequence:
Corollary 7. One has the following surprising dichotomy:

o Ifd < oo, Iy (m) = O(m?) for allm € N;

e If d = o0, Iy (m) = 2™ for all m € N.

Rather than immediately proving the corollary, note its interpretation. For any H, there
are essentially only two possibilities. One of them is that the VC-dimension of H is finite.
This case is “very good”: the growth function of H is polynomial in m, and the bound

dlnm+In(1/9) _ The

on the error of consistent hypotheses from Theorem 1 becomes ¢ = O ( -

other possibility is that the VC-dimension of H is infinite. It is the “worst possible case”
in terms of bounding the error of consistent hypotheses: the growth function of H becomes
exponential in m, and so for fixed § the bound in Theorem 1 does not go to zero as m — oc.
It is also the worst case in the sense that 2™ is the maximum number of labellings of any
m points.

Now we turn to the proof of Sauer’s lemma. Let us note the following helpful properties
of binomial coefficients that we use.

1L (7)) = m(m_l)'l;!(m_kﬂ). From this property, it follows that (7}') = O(m*) for fixed k.
In particular, this demonstrates Corollary 7, since for d < oo, the bound in Sauer’s

lemma becomes O(m?).
2. (W) =0ifk<0ork>m.
3. =" 1) + (fjll) This is often referred to as Pascal’s triangle property.

We also introduce a useful notation: ®4(m) = Z;'i:o (™).

i
Proof of Sauer’s lemma. We will prove Sauer’s lemma by induction on m + d. Let us start
with the base cases.
e m = 0. Here, [Iyy(m) =1= Z‘LO (?) = ®4(0). This is because there is exactly 1 way
to label m points, namely the empty sequence of labels.

e d=0. Here, lIy(m)=1= Z?:o ('9) = Po(m).

Now we assume m > 1,d > 1, and that the inductive hypothesis holds for any m/, d’
such that m’ + d" < m + d. We consider an arbitrary sample S = (x1,...,x,,). For the
inductive step, we want to show that |y (S)| < ®4(m).

Now, we look at all labellings induced by H on S. Let us define H; to be the set of
labellings induced by H on S’ = (z1,...,z,m—1). We can equivalently think of members of
H; as hypotheses defined on a restricted domain which is S’. Also, we define Hs to be the
set of all labellings [ of S’ such that there are exactly two different labellings of S by H
that induce the labelling [ on S’. We call this a “collapse”. In other words, labellings [ of
S’ that belong to Ho have the following property: The possible labellings of S such that



H1

1 Ty X3 T4 s 1 Ty T3 T4
0 1 1 0 0| — 0 1 1 0
0 1 1 0 1| ~
0 1 1 1 0| — 0 1 1 1
1 0 0 1 0 — 1 0 0 1
1 0 0 1 1| ~
1 1 0 0 1| — 1 1 0 0

Figure 2: Example illustrating the relationship between IIy(S) and H;. Here S =
(x1,...,25) and S’ = (x1,...,24). Note the collapse in rows 1 — 2 and 4 — 5. Because
of that, Ho = {(0110),(1001)} since these are the labellings on z1,...,x4 that corre-
spond to the collapses.

Z1,...,Tm—1 are labelled according to ! (the one where x,, is labelled as a 0 and the one
where z,, is labelled as a 1) are both realized by H on S. See Figure 2 for an illustrative
example.

Claim. |H1|+|Hz| = |T/(S)|. This follows from the definitions of H1, Hz, since counting
all possible labellings of S (|IIy(.5)]) is equivalent to counting all labellings of S” (|H1]) and
then adding 1 whenever there are two labellings of S that correspond to a particular labelling
of S, i.e. whenever there is a “collapse” (|Ha]).

The idea of what follows in the proof of Sauer’s lemma is to look at Hi,Ho and their
VC-dimensions, connect those to VCdim(H) = d, and apply the inductive hypothesis. Here
is the first step in that direction:

Claim. VCdim(H1) < d. Indeed, any set of examples T" that is shattered by H; is also
shattered by H, since H includes all the same labellings of S” as H;. O



