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1 Recap from last time

In this lecture, we are going to finish the proof of the theorem that we began last time.

Theorem 1. With probability at least 1 − δ, for every h ∈ H if h is consistent with m

random training examples then err(h) ≤ ε, where ε = O
(

ln(ΠH(2m))+ln(1/δ)
m

)
.

Recall how we went about proving this theorem. We first applied the double sample
trick, by considering, along with the original sample S, a second, “ghost” sample S′ which
also contains m elements. Thus, together S and S′ consist of 2m iid random variables.
Then, these two samples were randomly permuted into samples T and T ′, correspondingly.

We then defined M(h, S) as the number of mistakes that h makes on S and considered
three events:

B :∃h ∈ H : M(h, S) = 0 ∧ err(h) > ε

B′ :∃h ∈ H : M(h, S) = 0 ∧M(h, S′) ≥ mε

2

B′′ :∃h ∈ H : M(h, T ) = 0 ∧M(h, T ′) ≥ mε

2

Additionally, the event that M(h, T ) = 0∧M(h, T ′) ≥ mε
2 for a particular hypothesis h was

denoted b(h).
The driving idea behind the proof of Theorem 1 is that all we need to do in order to see

how a consistent (on S) hypothesis h generalizes, is to look at combinatorial properties of
the entire hypothesis space H. Thus, we defined the growth function of a hypothesis space
as

ΠH(m) := max
|S|=m

|ΠH(S)| ,

where
ΠH(S) := {〈h(x1), . . . , h(xm)〉 : h ∈ H}.

To apply this measure in the context of our proof, we needed to restrict our attention to
how h behaves on a finite set of points, namely, the 2m iid random variables from the two
samples S, S′.

Then the proof of Theorem 1 proceeded in steps. We covered the following ones last
time:

• Step 2: Pr[B] ≤ 2Pr[B′]

• Step 3: Pr[B′] = Pr[B′′]

• Step 4: Fix h, S, S′. Then, Pr[b(h)|S, S′] ≤ 2−mε/2.



2 Finishing the proof of Theorem 1

Now, we finish proving the theorem.

Step 5: Fix S, S′. Then Pr[B′′|S, S′] ≤ ΠH(2m) · 2−mε/2.
We have set everything up so that in order to study the error of a consistent hypothesis h,

we are only working with the samples S, S′ rather than the entire underlying space. At this
point, recall that the hypotheses from the space H exhibit |ΠH(S;S′)| possible behaviours
on combined samples S and S′. Imagine picking |ΠH(S;S′)| hypotheses out of H, one per
each possible behaviour on the samples S and S′ combined. Thus, let

H′ := {one representative hypothesis from H for every labelling on S, S′}.

Then
|H′| =

∣∣ΠH(S;S′)
∣∣ ≤ ΠH(2m).

Observe that b(h) only depends on the behaviour of h on S and S′, and does not depend
on how h labels the rest of the space. This justifies the second equality in the following
chain:

Pr[B′′|S, S′] = Pr[∃h ∈ H : b(h)|S, S′]
= Pr[∃h ∈ H′ : b(h)|S, S′]

≤
∑
h∈H′

Pr[b(h)|S, S′]

≤ |H′|2−mε/2

≤ ΠH(2m) · 2−mε/2.

The first inequality is due to the union bound. This concludes the proof of Step 5.

Step 6: Pr[B′′] ≤ ΠH(2m) · 2−mε/2.
The proof here relies on marginalization. By this, we mean in the present context the

following special case of the Tower Property of expectations. Let a be an event and X a
random variable. Then

Pr[a] = EX [Pr[a|X]].

Applying this property, and then using Step 5, we see that

Pr[B′′] = ES,S′ [Pr[B′′|S, S′]] ≤ ΠH(2m) · 2−mε/2.

Bringing Steps 1-6 together: We observe that

Pr[B] ≤ 2Pr[B′] = 2Pr[B′′] ≤ 2ΠH(2m) · 2−mε/2.

Here, the transitions hold due to Step 2, Step 3, and Step 6, respectively.
Picking

ε =
2

m
(lg ΠH(2m) + lg 1/δ + 1) = O

(
ln(ΠH(2m)) + ln(1/δ)

m

)
,

we have, as a consequence of Pr[B] ≤ 2ΠH(2m) · 2−mε/2, that Pr[B] ≤ δ, which concludes
the proof of the theorem.

2



3 The Vapnik-Chervonenkis (VC) dimension

The bound on the true error of a consistent hypothesis given in Theorem 1 reflects the
complexity of the hypothesis space H in terms of the logarithm of its growth function
evaluated at 2m, namely, ln(ΠH(2m)). However, due to the purely combinatorial nature of
the growth function ΠH(·), its asymptotic behaviour is far from obvious. Once we can get
hold of it, the bound in Theorem 1 will become much more useful. A very important concept
that captures the intrinsic complexity of a hypothesis space is the so-called VC-dimension.
It will help us study the behaviour of the growth function. We begin our discussion of the
VC-dimension with an auxiliary definition.

Definition 2. A sample S of size m is shattered by H if the hypotheses from H realize all
possible labellings of S. That is, |ΠH(S)| = 2m.

For example, if we consider H = {intervals on the real line}, then clearly H shatters any
subset of R of size 1 or 2. Indeed, H shatters any single point since depending on whether
that point is labelled + or −, we can find an interval that, respectively, includes or does
not include that point. And H shatters any two points. Indeed, suppose the points are
x1 and x2. Then the labelling −,− is realized by any interval that excludes both points,
the labelling +,+ is realized by any interval containing both points, and the labelling +,−
(−,+ respectively) corresponds to any interval that only contains x1 (x2 respectively).

Definition 3. The Vapnik-Chervonenkis (VC) dimension V Cdim(H) of a hypothesis set
H is the cardinality of the largest set shattered by H.

Continuing the previous example of H = {intervals on the real line}, we see that H has
VC-dimension 2. Indeed, we have shown that H shatters sets of 2 points. Thus, to prove
that the VC-dimension of H is equal to 2, it suffices to show that H does not shatter any
set of 3 points (why?). Consider any points x1 < x2 < x3 labelled as follows: + − +. Then
any interval that contains both x1 and x3 must contain x2. Therefore, it is impossible to
find an interval that labels x1 and x3 as + and x2 as −. Therefore, we have shown for an
arbitrary set of 3 points that not all labellings are realizable by hypotheses from H. This
proves our claim.

Figure 1: [Mohri et al. textbook, 2nd edition, 2018, pg. 39] A diamond-shaped set in R2

and some of its possible labellings, along with the axis-aligned rectangles that realize them.

To work out yet another example, consider H = {2d axis-aligned rectangles}. We claim
that V Cdim(H) = 4.

• First, V Cdim(H) ≥ 4 because it can be easily seen that e.g. for a “diamond-shaped”
set of 4 points in R2 (see Figure 1), there is an axis-aligned rectangle for every possible
labelling of these points.
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• Second, to show that V Cdim(H) ≤ 4 we need to prove that for any arrangement
of 5 points in R2, there is a labelling that no axis-aligned rectangle can realize. To
sketch the proof of this, consider any 5 points x1, . . . , x5 in R2. Choose a top-most,
a bottom-most, a left-most, and a right-most point from among these points. Some
of the chosen points may be equal, e.g. if one of the points is the top-most and also
the left-most point, but in total we will have chosen at most 4 points. Since we have
5 points in total, there will be at least one “leftover” point. Now, label the chosen
points as + and the leftover points as −. No axis-aligned rectangle can both contain
the chosen points and exclude the leftover points. Hence, no set of 5 points is shattered
by H, proving our claim.

In general, it can be shown that V Cdim({hyper-rectangles in Rn}) = 2n. See the
textbook for more details.

Finally, there is a very important hypothesis set whose VC-dimension we want to de-
scribe.

Definition 4. A linear threshold function h(·) in Rn with parameters w ∈ Rn, b ∈ R is

defined as h(x) =

{
1, if w · x ≥ b
0, otherwise

.

Any hyperplane of the form w ·x = b gives rise to a split of the space Rn into two halves,
and points are classified as + or − depending on which of the two half-spaces they belong
to.

Lemma 5. The hypothesis set H = {linear threshold functions in Rn} has V Cdim(H) =
n + 1. Furthermore, the VC-dimension of the set of linear threshold functions in Rn that
are based on hyperplanes that go through the origin, that is, where b = 0, is equal to n.

For the proof of this lemma, consult the textbook.

Remark 1. As seen from the previous examples, it is often the case that the VC-
dimension of a hypothesis set H is the same as the number of parameters that are needed
to define H. In particular, intervals in R are given by their two ends, and the VC-dimension
is 2. Axis-aligned rectangles are given by their 4 corners, and the VC-dimension is 4. Linear
threshold functions in Rn have n+1 parameters (n coordinates of w and the one-dimensional
b), and this is the same as their VC-dimension. Moreover, setting b = 0 reduces the effective
number of parameters by 1, and accordingly the VC-dimension reduces to n. However, this
is not always the case. For instance, there exist single-parameter environments whose VC-
dimension is ∞.

Remark 2. An interesting question is that of the relation between V Cdim(H) and
lg |H| for finite hypothesis spaces. We would like to note the property that V Cdim(H) ≤
lg |H| in that case. Indeed, V Cdim(H) = d holds only if there is a set of d examples that is
shattered by H. This implies, however, that there are at least 2d hypotheses in H, at least
one per labelling of the d examples. So |H| ≥ 2d, and taking logs gives the above inequality.

4 Sauer’s lemma

We begin the proof of the following result.
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Theorem 6 (Sauer’s lemma). Let H be a hypothesis space, d = V Cdim(H). Then

ΠH(m) ≤
d∑
i=0

(
m

i

)
.

This theorem has a very surprising and far-reaching consequence:

Corollary 7. One has the following surprising dichotomy:

• If d <∞, ΠH(m) = O(md) for all m ∈ N;

• If d =∞, ΠH(m) = 2m for all m ∈ N.

Rather than immediately proving the corollary, note its interpretation. For any H, there
are essentially only two possibilities. One of them is that the VC-dimension of H is finite.
This case is “very good”: the growth function of H is polynomial in m, and the bound

on the error of consistent hypotheses from Theorem 1 becomes ε = O
(
d lnm+ln(1/δ)

m

)
. The

other possibility is that the VC-dimension of H is infinite. It is the “worst possible case”
in terms of bounding the error of consistent hypotheses: the growth function of H becomes
exponential in m, and so for fixed δ the bound in Theorem 1 does not go to zero as m→∞.
It is also the worst case in the sense that 2m is the maximum number of labellings of any
m points.

Now we turn to the proof of Sauer’s lemma. Let us note the following helpful properties
of binomial coefficients that we use.

1.
(
m
k

)
= m(m−1)...(m−k+1)

k! . From this property, it follows that
(
m
k

)
= O(mk) for fixed k.

In particular, this demonstrates Corollary 7, since for d < ∞, the bound in Sauer’s
lemma becomes O(md).

2.
(
m
k

)
= 0 if k < 0 or k > m.

3.
(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
. This is often referred to as Pascal’s triangle property.

We also introduce a useful notation: Φd(m) :=
∑d

i=0

(
m
i

)
.

Proof of Sauer’s lemma. We will prove Sauer’s lemma by induction on m+ d. Let us start
with the base cases.

• m = 0. Here, ΠH(m) = 1 =
∑d

i=0

(
0
i

)
= Φd(0). This is because there is exactly 1 way

to label m points, namely the empty sequence of labels.

• d = 0. Here, ΠH(m) = 1 =
∑d

i=0

(
m
0

)
= Φ0(m).

Now we assume m ≥ 1, d ≥ 1, and that the inductive hypothesis holds for any m′, d′

such that m′ + d′ < m + d. We consider an arbitrary sample S = 〈x1, . . . , xm〉. For the
inductive step, we want to show that |ΠH(S)| ≤ Φd(m).

Now, we look at all labellings induced by H on S. Let us define H1 to be the set of
labellings induced by H on S′ = 〈x1, . . . , xm−1〉. We can equivalently think of members of
H1 as hypotheses defined on a restricted domain which is S′. Also, we define H2 to be the
set of all labellings l of S′ such that there are exactly two different labellings of S by H
that induce the labelling l on S′. We call this a “collapse”. In other words, labellings l of
S′ that belong to H2 have the following property: The possible labellings of S such that
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H1

x1 x2 x3 x4 x5 x1 x2 x3 x4

0 1 1 0 0 → 0 1 1 0
0 1 1 0 1 �
0 1 1 1 0 → 0 1 1 1
1 0 0 1 0 → 1 0 0 1
1 0 0 1 1 �
1 1 0 0 1 → 1 1 0 0

Figure 2: Example illustrating the relationship between ΠH(S) and H1. Here S =
(x1, . . . , x5) and S′ = (x1, . . . , x4). Note the collapse in rows 1 − 2 and 4 − 5. Because
of that, H2 = {(0 1 1 0), (1 0 0 1)} since these are the labellings on x1, . . . , x4 that corre-
spond to the collapses.

x1, . . . , xm−1 are labelled according to l (the one where xm is labelled as a 0 and the one
where xm is labelled as a 1) are both realized by H on S. See Figure 2 for an illustrative
example.

Claim. |H1|+|H2| = |ΠH(S)|. This follows from the definitions ofH1,H2, since counting
all possible labellings of S (|ΠH(S)|) is equivalent to counting all labellings of S′ (|H1|) and
then adding 1 whenever there are two labellings of S that correspond to a particular labelling
of S′, i.e. whenever there is a “collapse” (|H2|).

The idea of what follows in the proof of Sauer’s lemma is to look at H1,H2 and their
VC-dimensions, connect those to V Cdim(H) = d, and apply the inductive hypothesis. Here
is the first step in that direction:

Claim. V Cdim(H1) ≤ d. Indeed, any set of examples T that is shattered by H1 is also
shattered by H, since H includes all the same labellings of S′ as H1.
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