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1 Review

Last time in class we proved Occam’s Razor for a finite hypothesis size. To recap we proved
that if we have an Algorithm A that finds a hypothesis hA ∈ H consistent with m examples,
where m ≥ 1

ε (ln |H|+ ln(1δ )), then Pr(errD(ha) > ε) ≤ δ.
This theorem gives us a lot of useful intuition but now we want to prove a bound for

any hypothesis space — not necessarily finite.

2 Growth Function

2.1 Motivation

Let us examine the positive half-lines problem that we discussed in lecture.

X = R,H = { Positive Half Lines }

We want to think about how many functionally distinct hypotheses we have on a finite set
of points. Consider this arbitrary set of m points:

{0.1, 0.5, 3.7, 6.1, 10.4, 11.3}

Let’s consider the hypothesis h1 which starts at 2.5, and h2 which starts at 2.7 and both
extend to the positive half line on R. Are these two hypotheses functionally different on
these six points? The answer is no — these hypotheses seem to be functionally equivalent.
We can see that on these six points, there are only 7 different hypotheses that are not
equivalent. We denote the hypotheses and the labels that these hypotheses give:

h0 : {(0.1,+), (0.5,+), (3.7,+), (6.1,+), (10.4,+), (11.3,+)}

h1 : {(0.1,−), (0.5,+), (3.7,+), (6.1,+), (10.4,+), (11.3,+)}

h2 : {(0.1,−), (0.5,−), (3.7,+), (6.1,+), (10.4,+), (11.3,+)}

h2 : {(0.1,−), (0.5,−), (3.7,−), (6.1,+), (10.4,+), (11.3,+)}

h4 : {(0.1,−), (0.5,−), (3.7,−), (6.1,−), (10.4,+), (11.3,+)}

h5 : {(0.1,−), (0.5,−), (3.7,−), (6.1,−), (10.4,−), (11.3,+)}

h6 : {(0.1,−), (0.5,−), (3.7,−), (6.1,−), (10.4,−), (11.3,−)}

In fact, we can easily see that for m points, there are m + 1 distinct labelings possible
given our hypotheses. An equivalent statement is that for our m points there are m + 1
distinct “behaviors” or “dichotomies.” We observe that this is far fewer than the 2m to-
tal possible labelings. This concept class/hypothesis space is PAC-learnable and we will
see that the fact that the possible labelings allowed using our hypothesis space are much



smaller than the total possible labelings is a contributing factor to the PAC-learnability
of this problem. Other examples of how many labelings certain hypothesis spaces give us
include:

(1) half lines: 2(m + 1) − 2 = 2m. For every positive half line l+ we reverse the half
line to make it a negative half line l−. This flips the label for every point labeled under l+

producing m+ 1 additional labelings (except for the labelings that label all points positive
and all points negative which we already counted in the set of all positive half lines). This
gives us m+1−2 more labelings to the m+1 labelings we got from looking only at positive
half-lines.

(2) intervals:
(
m
2

)
+ m + 1 = O(m2). We choose two different points to be the ends of

our interval giving us
(
m
2

)
possibilities, or we choose our intervals around only one data-

point (start and end are the same) which gives us m more possibilities, and we have the
possibility of an empty interval which gives 1 more option.

These are all polynomial, a fact we will soon see to be important. Our guiding intuition
is that we have a nice polynomial case for the number of labelings and a bad exponential
case. Our intuition for now should say that the nice polynomial case suggests the problem
is PAC-learnable

2.2 Function Definition

Given a hypothesis space H, and given sample points S = 〈x1, . . . , xm〉 We define the
function on S to the collection of all labelings induced by S by hypotheses in H:

ΠH(S) = {〈h(x1), . . . , h(xm)〉 : h ∈ H}

We will overload this function to get a more useful function with the same spirit:

ΠH(m) = max
|S|=m

|ΠH(S)|

We call this the growth function. We observe that this counts the maximum number of
distinct labelings on any set of m points which captures the quantities of interest in our
motivating examples. Our goal will be to get error bounds that don’t depend on |H| but
rather on our growth function of the number of examples.

Our goal is to be able to treat the set of labelings on the training set as our hypothesis
space, replacing |H| with |ΠH(S)| ≤ ΠH(m) in the bounds we proved last lecture. We
cannot exactly do this, but we will do something similar. We also note that in the case of
the ΠH(m) being polynomial, this will give a very good bound on the generalization error,
almost as good as for the case of finite |H|.

3 Generalization-error Bounds Based on the Growth
Function

We spend the final part of class beginning the proof of the following theorem:
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3.1 Theorem

With probability ≥ 1 − δ, ∀h ∈ H if h is consistent on random training sample of size m,
then errD(h) ≤ ε where:

ε = O

(
ln(ΠH(2m)) + ln(1δ )

m

)
Remark: If we compare this to the bound we proved last lecture, we see that it is similar
with the main difference being the ln(ΠH(2m)) term instead of a ln(|H|) term. This means
that we can use the growth function of the hypothesis space as a proxy for the size of the
hypothesis space. This is especially useful for hypothesis spaces that are infinite but have
a small growth function (for example, positive half lines).

3.2 Proof:

3.2.1 Double Sample Trick

Here we describe some notation and a proof technique that will help us in this proof. Imagine
drawing two samples S: which is our real sample and S′: which is our ”ghost sample” which
is a proxy for the generalization error. This is useful because dealing with S′ lets us work
with a finite set of points rather than the generalization error over the entire domain. We
will usually notate:

S : 〈x1, ..., xm〉

S′ : 〈x′1, ..., x′m〉

Both of these samples are formed by choosing i.i.d samples from D (our distribution). The
idea is to use the mistakes that h makes on S ′ as a proxy for the true error rate. We define

M(h, S) = number of mistakes h makes on S

In the spirit of using S′ as a stand-in for measuring the true error, we define two events:

B : ∃h ∈ H : M(h, S) = 0 ∧ err(h) > ε

This event describes a hypothesis that is consistent with S but has a high generalization
error (h is ε-bad). Our goal is to bound the probability of this event.

B′ : ∃h ∈ H : M(h, S) = 0 ∧M(h, S′) ≥ mε

2

This event describes a hypothesis that is consistent with S but makes mε
2 mistakes on our

ghost sample. We will use this event to help us bound B. We will introduce some more
notation later but we will proceed to the proof. We will begin this proof in steps.

3.2.2 Step 1

Claim: Pr(B′|B) ≥ 1
2 if m ≥ 8

ε
Proof: We choose h for which B holds:

err(h) ≥ ε
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We know h is consistent with S because B holds, so we only need to show that h makes a
lot of mistakes on S′. We compute (using the fact that our ghost samples are drawn i.i.d,
and linearity of expectation):

E[M(h, S′)] ≥ mε
We build intuition for the following inequality from the fact that the probability that h
makes less than half its expected mistakes is small. We will learn more tools to formalize
this intuition but for now we can take the following as a fact.

Pr
(
M(h, S′) <

mε

2

)
≤ 1

2

Thus given B we can determine event B′ happens with at least 1/2 probability.

3.2.3 Step 2

Claim: Pr(B) ≤ 2Pr(B′)
Proof:

Pr(B′) ≥ Pr(B′ ∧B)

This is true because the event on the right hand side implies the event on the left hand
side. We use definition of conditional probability to conclude that:

= Pr(B)Pr(B′|B) ≥ 1

2
Pr(B)

The last inequality comes from substituting Step 1 for the Pr(B′|B). We conclude that:

Pr(B′) ≥ 1

2
Pr(B)⇒ Pr(B) ≤ 2Pr(B′)

3.2.4 Step 3

We consider two experiments, (a), (b). In experiment (a) we choose S, S′ of size m as usual,
and in (b) we choose S, S′ as usual and then perform the following process.

for i in [m]:
flip a coin
if heads, do nothing
if tails, swap examples xi and x′i

We will call our new sets after performing this process T, T ′ corresponding to S, S′ af-
ter we apply the process. We observe that the distributions of T, T ′ are identical to those of
S, S′. This is true because since the samples are chosen i.i.d, all permutations of the data
are equally likely, so permuting the data after it has already been sampled does not change
its distribution.

We now define:

B′′ : ∃h ∈ H : M(h, T ) = 0 ∧M(h, T ′) ≥ mε

2

This event describes a hypothesis that is consistent with T but makes mε
2 mistakes on our

transformed ghost sample T ′. From our earlier observation that the distributions of T, T ′,
and S, S′ are identical, we conclude that:

Pr(B′) = Pr(B′′)

4



3.2.5 Step 4

For a fixed h, We define b(h) as the event that h satisfies the conditions of B′′. This means
that h is consistent with T but makes mε

2 mistakes on T ′.

Claim:
Pr(b(h)|S, S′) ≤ 2−mε/2

Proof: Since we fix h, and condition on S, S′, the only randomness is over the random
swapping that we use to construct T, T ′ . We will do this proof in cases:

(I) There is some index i where h makes a mistake on both xi and x′i
In this case whether or not we swap xi and x′i, h will make a mistake on T at this index,
and so M(h, T ) 6= 0 and so Pr(b(h)|S, S′) = 0.

For the next cases we define r as the number of pairs xi ∈ S, x′i ∈ S′ where there is exactly
one error between the two. We may assume for the remaining cases that h is correct on xi or
x′i or both for all i, as we have handled the case where h is wrong on both xi and x′i for some i.

(II) r < mε
2

In this case we observe that even if we get lucky and after the random swaps all the exam-
ples on which h makes mistakes are in T ′, we still won’t have enough mistakes to satisfy
b(h) and so we have Pr(b(h)|S, S′) = 0

(III) r ≥ mε
2

Here we need all of the coin flips to come out the right way so that all the mistakes are in
T ′ and none in T . Since the coin flips are all independent:

Pr(b(h)|S, S′) =
1

2r
≤ 2−mε/2

In any of these three cases our claim is satisfied as desired

The remaining steps of the proof will be covered next lecture.
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